BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 13948261)

  • 41. Exploring the evolution of marine invertebrate cryopreservation - Landmarks, state of the art and future lines of research.
    Paredes E
    Cryobiology; 2015 Oct; 71(2):198-209. PubMed ID: 26297945
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sea urchin embryos and larvae as biosensors for neurotoxicants.
    Buznikov GA; Slotkin TA; Lauder JM
    Curr Protoc Toxicol; 2003; Chapter 1():Unit1.6. PubMed ID: 23045086
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Some characteristics of the morphogenic inhibitor in blastocoelic fluid from sea urchin embryo.
    Berg WE
    Exp Cell Res; 1972 Dec; 75(2):539-41. PubMed ID: 4644256
    [No Abstract]   [Full Text] [Related]  

  • 44. Amino acid incorporation into the proteins of isolated cells and total homogenates of sea urchin embryos.
    GIUDICE G
    Arch Biochem Biophys; 1962 Dec; 99():447-50. PubMed ID: 13948263
    [No Abstract]   [Full Text] [Related]  

  • 45. [The action of histones on the early development of the sea urchin embryos].
    Vorob'ev VI; Gineĭmis AA; Kosmyleva EI; Smirnova TA
    Tsitologiia; 1968 Apr; 10(4):487-93. PubMed ID: 5752096
    [No Abstract]   [Full Text] [Related]  

  • 46. EFFECTS OF GROWTH-INHIBITING CHEMICALS ON THE SAND-DOLLAR EMBRYO, ECHINARACHNIUS PARMA.
    KARNOFSKY DA; SIMMEL EB
    Prog Exp Tumor Res; 1963; 3():254-95. PubMed ID: 14148383
    [No Abstract]   [Full Text] [Related]  

  • 47. Cost of protein synthesis and energy allocation during development of antarctic sea urchin embryos and larvae.
    Pace DA; Manahan DT
    Biol Bull; 2007 Apr; 212(2):115-29. PubMed ID: 17438204
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fixed metabolic costs for highly variable rates of protein synthesis in sea urchin embryos and larvae.
    Pace DA; Manahan DT
    J Exp Biol; 2006 Jan; 209(Pt 1):158-70. PubMed ID: 16354787
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Incorporation of C 14-L-leucine into protein by cell-free systems from sea urchin embryos at different stages of development.
    HULTIN T; BERGSTRAND A
    Dev Biol; 1960 Feb; 2():61-75. PubMed ID: 14403968
    [No Abstract]   [Full Text] [Related]  

  • 50. [Presence of estradiol in embryos and larva of the sea urchin Strongylocentrotus intermedius].
    Varaksin AA
    Zh Evol Biokhim Fiziol; 1989; 25(1):128-9. PubMed ID: 2728688
    [No Abstract]   [Full Text] [Related]  

  • 51. Effects of certain pyrimidines on cleavage and nucleic acid metabolism in sea urchin, Strongylocentrotus purpuratus, embryos.
    STEARNS LW; MARTIN WE; JOLLEY WB; BAMBERGER JW
    Exp Cell Res; 1962 Aug; 27():250-9. PubMed ID: 13916458
    [No Abstract]   [Full Text] [Related]  

  • 52. Hydroxyproline in the larval and adult forms of the sea urchin, Strongylocentrotus drobachiensis.
    VANABLE JW
    Exp Cell Res; 1961 Jan; 22():163-8. PubMed ID: 13780083
    [No Abstract]   [Full Text] [Related]  

  • 53. Microspectrophotometry of nuclear DNA during the early development of a sea urchin, a sand dollar, and their interordinal hybrids.
    Brookbank JW; Cummins JE
    Dev Biol; 1972 Oct; 29(2):234-40. PubMed ID: 5075790
    [No Abstract]   [Full Text] [Related]  

  • 54. Echinochrome synthesis in hybrid sea urchin embrovos.
    CHAFFEE RR; MAZIA D
    Dev Biol; 1963 Mar; 6():502-12. PubMed ID: 14019839
    [No Abstract]   [Full Text] [Related]  

  • 55. Development and life cycle of the parthenogenetically activated sea urchin embryo.
    Brandriff B; Hinegardner RI; Steinhardt R
    J Exp Zool; 1975 Apr; 192(1):13-24. PubMed ID: 1092807
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A synthetic derivative of plant allylpolyalkoxybenzenes induces selective loss of motile cilia in sea urchin embryos.
    Semenova MN; Tsyganov DV; Yakubov AP; Kiselyov AS; Semenov VV
    ACS Chem Biol; 2008 Feb; 3(2):95-100. PubMed ID: 18278850
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The mechanics of sea urchin development.
    HORSTADIUS S
    Annee Biol; 1950 Aug; 54(8):381-98. PubMed ID: 14790592
    [No Abstract]   [Full Text] [Related]  

  • 58. Cryopreservation of sea urchin sperm and early life stages.
    Paredes E; Adams SL; Vignier J
    Methods Cell Biol; 2019; 150():47-69. PubMed ID: 30777189
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Studies on the cellular basis of morphogenesis of the sea urchin embryo. The formation of the blastula.
    WOLPERT L; GUSTAFSON T
    Exp Cell Res; 1961 Nov; 25():374-82. PubMed ID: 14008118
    [No Abstract]   [Full Text] [Related]  

  • 60. Desmosome development in normal and reassociating cells in the early chick blastoderm.
    OVERTON J
    Dev Biol; 1962 Jun; 4():532-48. PubMed ID: 14482867
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.