These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 13948358)

  • 1. Ribitol-5-phosphate dehydrogenase from Lactobacillus plantarum.
    GLASER L
    Biochim Biophys Acta; 1963 Apr; 67():525-30. PubMed ID: 13948358
    [No Abstract]   [Full Text] [Related]  

  • 2. Biosynthesis of dicarboxylic acids by carbon dioxide fixation. V. Further study of the "malic" enzyme of Lactobacillus arabinosus.
    KAUFMAN S; KORKES S; DEL CAMPILLO A
    J Biol Chem; 1951 Sep; 192(1):301-12. PubMed ID: 14917678
    [No Abstract]   [Full Text] [Related]  

  • 3. D- and L-lactic acid dehydrogenases in Lactobacillus plantarum.
    DENNIS D; KAPLAN NO
    J Biol Chem; 1960 Mar; 235():810-8. PubMed ID: 13815938
    [No Abstract]   [Full Text] [Related]  

  • 4. FORMATION OF FOLATE ENZYMES DURING THE GROWTH CYCLE OF BACTERIA. 3. CHANGES IN TETRAHYDROFOLATE DEHYDROGENASE ACTIVITY DURING THE ACTIVE GROWTH PHASES OF STREPTOCOCCUS THERMOPHILUS AND LACTOBACILLUS ARABINOSUS.
    NURMIKKO V; SOINI J; AAERIMAA O
    Acta Chem Scand; 1965; 19():129-34. PubMed ID: 14280837
    [No Abstract]   [Full Text] [Related]  

  • 5. Stereospecific DPN-independent lactic dehydrogenases of Lactobacillus arabinosus 17.5.
    SNOSWELL AM
    Biochim Biophys Acta; 1959 Oct; 35():574-5. PubMed ID: 13832309
    [No Abstract]   [Full Text] [Related]  

  • 6. D-sorbitol-6-phosphate dehydrogenase from Lactobacillus casei.
    SHOCKLEY TE; PRIDE HS
    J Bacteriol; 1959 Jun; 77(6):695-700. PubMed ID: 13664648
    [No Abstract]   [Full Text] [Related]  

  • 7. The inhibition of aspartic acid utilization in the synthesis of the adaptive malic enzyme in Lactobacillus arabinosus.
    IFLAND PW; SHIVE W
    J Biol Chem; 1956 Dec; 223(2):949-57. PubMed ID: 13385242
    [No Abstract]   [Full Text] [Related]  

  • 8. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation.
    Adachi O; Fujii Y; Ano Y; Moonmangmee D; Toyama H; Shinagawa E; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering.
    Ladero V; Ramos A; Wiersma A; Goffin P; Schanck A; Kleerebezem M; Hugenholtz J; Smid EJ; Hols P
    Appl Environ Microbiol; 2007 Mar; 73(6):1864-72. PubMed ID: 17261519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OXIDIZED NICOTINAMIDE-ADENINE DINUCLEOTIDE-INDEPENDENT LACTATE DEHYDROGENASES OF LACTOBACILLUS ARABINOSUS 17.5.
    SNOSWELL AM
    Biochim Biophys Acta; 1963 Sep; 77():7-9. PubMed ID: 14078976
    [No Abstract]   [Full Text] [Related]  

  • 11. The ribitol teichoic acid from Lactobacillus arabinosus Walls: isolation and structure of ribitol glucosides.
    ARCHIBALD AR; BADDILEY J; BUCHANAN JG
    Biochem J; 1961 Oct; 81(1):124-34. PubMed ID: 13862085
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of nutritional deficiencies on synthesis of the inducible malic enzyme of Lactobacillus plantarum.
    NATHAN HA
    Arch Mikrobiol; 1961; 38():107-13. PubMed ID: 13727916
    [No Abstract]   [Full Text] [Related]  

  • 13. Nitrate reduction by certain strains of Lactobacillus plantarum.
    COSTILOW RN; HUMPHREYS TW
    Science; 1955 Feb; 121(3136):168. PubMed ID: 13225760
    [No Abstract]   [Full Text] [Related]  

  • 14. Metabolism of biodiesel-derived glycerol in probiotic Lactobacillus strains.
    Rivaldi JD; Sousa Silva M; Duarte LC; Ferreira AE; Cordeiro C; de Almeida Felipe Md; de Ponces Freire A; de Mancilha IM
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1735-43. PubMed ID: 23229571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribitol dehydrogenase in Aerobacter aerogenes 1033.
    HULLEY SB; JORGENSEN SB; LIN EC
    Biochim Biophys Acta; 1963 Feb; 67():219-25. PubMed ID: 13955642
    [No Abstract]   [Full Text] [Related]  

  • 16. The structure of an alternative wall teichoic acid produced by a Lactobacillus plantarum WCFS1 mutant contains a 1,5-linked poly(ribitol phosphate) backbone with 2-α-D-glucosyl substitutions.
    Tomita S; de Waard P; Bakx EJ; Schols HA; Kleerebezem M; Bron PA
    Carbohydr Res; 2013 Apr; 370():67-71. PubMed ID: 23454138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pentose fermentation by Lactobacillus plantarum. V. Fermentation of 2-deoxy-D-ribose.
    DOMAGK GF; HORECKER BL
    J Biol Chem; 1958 Aug; 233(2):283-6. PubMed ID: 13563487
    [No Abstract]   [Full Text] [Related]  

  • 18. The isolation of cytidine diphosphate glycerol, cytidine diphosphate ribitol and mannitol 1-phosphate from Lactobacillus arabinosus.
    BADDILEY J; BUCHANAN JG; CARSS B; MATHIAS AP; SANDERSON AR
    Biochem J; 1956 Dec; 64(4):599-603. PubMed ID: 13382807
    [No Abstract]   [Full Text] [Related]  

  • 19. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol.
    Toivari MH; Maaheimo H; Penttilä M; Ruohonen L
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):731-9. PubMed ID: 19711072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribitol dehydrogenase. II. Studies on the reaction mechanism.
    NORDLIE RC; FROMM HJ
    J Biol Chem; 1959 Oct; 234():2523-31. PubMed ID: 14427582
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.