BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 1394859)

  • 1. Altered cellular calcium regulation and hepatic glucose production during hemorrhagic shock.
    Maitra SR; Geller ER; Pan W; Kennedy PR; Higgins LD
    Circ Shock; 1992 Sep; 38(1):14-21. PubMed ID: 1394859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered hepatocellular Ca2+ regulation during hemorrhagic shock and resuscitation.
    Rose S; Pizanis A; Silomon M
    Hepatology; 1997 Feb; 25(2):379-84. PubMed ID: 9021950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in renal gluconeogenesis and blood flow during hemorrhagic shock.
    Maitra SR; Pan W; Geller ER; Henry MC
    Circ Shock; 1993 Oct; 41(2):67-70. PubMed ID: 8242881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beneficial effects of diltiazem in hemorrhagic shock.
    Maitra SR; Krikhely M; Dulchavsky SA; Geller ER; Kreis DJ
    Circ Shock; 1991 Feb; 33(2):121-5. PubMed ID: 1646688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of insulin and glucose during resuscitation from hemorrhagic shock increases hepatic ATP.
    Chang CG; Van Way CW; Dhar A; Helling T; Hahn Y
    J Surg Res; 2000 Aug; 92(2):171-6. PubMed ID: 10896818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of diltiazem on altered glucose regulation during endotoxic shock.
    Maitra SR; Pan W; Geller ER
    J Surg Res; 1993 Aug; 55(2):201-4. PubMed ID: 8412100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular-intracellular lactate gradients in skeletal muscle during hemorrhagic shock in the rat.
    Pearce FJ; Connett RJ; Drucker WR
    Surgery; 1985 Oct; 98(4):625-31. PubMed ID: 4049240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in cellular calcium and magnesium during circulatory/septic shock.
    Sayeed MM; Zhu M; Maitra SR
    Magnesium; 1989; 8(3-4):179-89. PubMed ID: 2682043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in hepatic gluconeogenesis, prostanoid, and intracellular calcium during sepsis.
    Maitra SR; Homan CS; Beuhler MC; Thode HC; Henry M
    Acad Emerg Med; 1999 Jun; 6(6):588-95. PubMed ID: 10386675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pentoxifylline prevention of altered hepatocyte calcium regulation during hemorrhagic shock/resuscitation.
    Silomon M; Pizanis A; Larsen R; Rose S
    Crit Care Med; 1998 Mar; 26(3):494-500. PubMed ID: 9504578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute effect of leptin on hepatic glycogenolysis and gluconeogenesis in perfused rat liver.
    Nemecz M; Preininger K; Englisch R; Fürnsinn C; Schneider B; Waldhäusl W; Roden M
    Hepatology; 1999 Jan; 29(1):166-72. PubMed ID: 9862863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of hemorrhagic stress on liver gluconeogenesis. An isolated rat liver perfusion study with three-carbon units as substrates.
    Boija PO; Nylander G; Ware J
    Acta Chir Scand; 1987 Apr; 153(4):273-8. PubMed ID: 3630525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Intracellular calcium channels, hormone receptors and intercellular calcium waves].
    Tordjmann T; Tran D; Berthon B; Jacquemin E; Guillon G; Combettes L; Claret M
    C R Seances Soc Biol Fil; 1998; 192(1):149-57. PubMed ID: 9759360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of phosphate depletion on gluconeogenesis in isolated rat hepatocytes.
    Hörl WH; Kreusser W; Heidland A; Ritz E
    Miner Electrolyte Metab; 1984; 10(4):275-80. PubMed ID: 6146923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Microcirculation of the liver in hemorrhagic shock in the rat and its significance for energy metabolism and function].
    Vollmar B; Lang G; Post S; Menger MD; Messmer K
    Zentralbl Chir; 1993; 118(4):218-25. PubMed ID: 8493831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The attenuation of hepatic microcirculatory alterations by exogenous substitution of nitric oxide by s-nitroso-human albumin after hemorrhagic shock in the rat.
    Bauer C; Kuntz W; Ohnsmann F; Gasser H; Weber C; Redl H; Marzi I
    Shock; 2004 Feb; 21(2):165-9. PubMed ID: 14752291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of hemorrhagic shock on hepatic energy metabolism in carbon tetrachloride-induced cirrhotic rats.
    Ikai I; Shimahara Y; Wakashiro S; Ozaki N; Tokunaga Y; Tanaka A; Morimoto T; Ozawa K
    Circ Shock; 1988 Dec; 26(4):365-74. PubMed ID: 3214931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diltiazem preserves hepatic gluconeogenesis following hemorrhagic shock.
    Geller ER; Higgins LD; Drourr N; Maitra SR
    J Trauma; 1993 Nov; 35(5):703-7; discussion 707-8. PubMed ID: 8230333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melatonin receptors mediate improvements of liver function but not of hepatic perfusion and integrity after hemorrhagic shock in rats.
    Mathes AM; Kubulus D; Weiler J; Bentley A; Waibel L; Wolf B; Bauer I; Rensing H
    Crit Care Med; 2008 Jan; 36(1):24-9. PubMed ID: 18090374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.