BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1395138)

  • 21. Tetrahymena IFT122A is not essential for cilia assembly but plays a role in returning IFT proteins from the ciliary tip to the cell body.
    Tsao CC; Gorovsky MA
    J Cell Sci; 2008 Feb; 121(Pt 4):428-36. PubMed ID: 18211962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insulin/FGF-binding ciliary membrane glycoprotein from Tetrahymena.
    Leick V; Bøg-Hansen TC; Juhl HA
    J Membr Biol; 2001 May; 181(1):47-53. PubMed ID: 11331937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dephosphorylation of inner arm 1 is associated with ciliary reversals in Tetrahymena thermophila.
    Deckman CM; Pennock DG
    Cell Motil Cytoskeleton; 2004 Feb; 57(2):73-83. PubMed ID: 14691947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular polarity in ciliates: persistence of global polarity in a disorganized mutant of Tetrahymena thermophila that disrupts cytoskeletal organization.
    Jerka-Dziadosz M; Jenkins LM; Nelsen EM; Williams NE; Jaeckel-Williams R; Frankel J
    Dev Biol; 1995 Jun; 169(2):644-61. PubMed ID: 7781905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Progeny of germ line knockouts of ASI2, a gene encoding a putative signal transduction receptor in Tetrahymena thermophila, fail to make the transition from sexual reproduction to vegetative growth.
    Li S; Yin L; Cole ES; Udani RA; Karrer KM
    Dev Biol; 2006 Jul; 295(2):633-46. PubMed ID: 16712831
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strategies for the isolation of ciliary motility and assembly mutants in Tetrahymena.
    Pennock DG; Gorovsky MA
    Methods Cell Biol; 1995; 47():571-8. PubMed ID: 7476547
    [No Abstract]   [Full Text] [Related]  

  • 27. Mutations in genes encoding inner arm dynein heavy chains in Tetrahymena thermophila lead to axonemal hypersensitivity to Ca2+.
    Liu S; Hennessey T; Rankin S; Pennock DG
    Cell Motil Cytoskeleton; 2005 Nov; 62(3):133-40. PubMed ID: 16173097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Costimulation-induced rounding in Tetrahymena thermophila: early cell shape transformation induced by sexual cell-to-cell collisions between complementary mating types.
    Fujishima M; Tsuda M; Mikami Y; Shinoda K
    Dev Biol; 1993 Jan; 155(1):198-205. PubMed ID: 8416833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deciliation induces phosphorylation of a 90-kDa cortical protein in Tetrahymena thermophila.
    Gitz DL; Pennock DG
    J Eukaryot Microbiol; 1995; 42(6):742-8. PubMed ID: 8520589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell division induced by mechanical stimulation in starved Tetrahymena thermophila: cell cycle without synthesis of macronuclear DNA.
    Iwamoto M; Sugai T; Nakaoka Y
    Cell Biol Int; 2004; 28(7):503-9. PubMed ID: 15261157
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disruption of genes encoding predicted inner arm dynein heavy chains causes motility phenotypes in Tetrahymena.
    Liu S; Hard R; Rankin S; Hennessey T; Pennock DG
    Cell Motil Cytoskeleton; 2004 Nov; 59(3):201-14. PubMed ID: 15468164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Locus-dependent profiles of the rescue of nonexcitable behavioral mutants during conjugation in Tetrahymena thermophila.
    Takahashi M
    Dev Genet; 1992; 13(2):174-9. PubMed ID: 1499159
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ingestion and inactivation of bacteriophages by Tetrahymena.
    Hennemuth W; Rhoads LS; Eichelberger H; Watanabe M; Van Bell KM; Ke L; Kim H; Nguyen G; Jonas JD; Veith D; Van Bell CT
    J Eukaryot Microbiol; 2008; 55(1):44-50. PubMed ID: 18251802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PHLP2 is essential and plays a role in ciliogenesis and microtubule assembly in Tetrahymena thermophila.
    Bregier C; Krzemień-Ojak L; Włoga D; Jerka-Dziadosz M; Joachimiak E; Batko K; Filipiuk I; Smietanka U; Gaertig J; Fabczak S; Fabczak H
    J Cell Physiol; 2013 Nov; 228(11):2175-89. PubMed ID: 23588994
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inner arm dynein 1 is essential for Ca++-dependent ciliary reversals in Tetrahymena thermophila.
    Hennessey TM; Kim DY; Oberski DJ; Hard R; Rankin SA; Pennock DG
    Cell Motil Cytoskeleton; 2002 Dec; 53(4):281-8. PubMed ID: 12378538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein substrates for cGMP-dependent protein phosphorylation in cilia of wild type and atalanta mutants of Paramecium.
    Ann KS; Nelson DL
    Cell Motil Cytoskeleton; 1995; 30(4):252-60. PubMed ID: 7796456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The actin gene ACT1 is required for phagocytosis, motility, and cell separation of Tetrahymena thermophila.
    Williams NE; Tsao CC; Bowen J; Hehman GL; Williams RJ; Frankel J
    Eukaryot Cell; 2006 Mar; 5(3):555-67. PubMed ID: 16524910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of initiation and elongation of cilia during ciliary regeneration in Tetrahymena.
    Hadley GA; Williams NE
    Mol Cell Biol; 1981 Sep; 1(9):865-70. PubMed ID: 9279399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A temperature-sensitive cell cycle arrest mutation affecting H1 phosphorylation and nuclear localization of a small heat shock protein in Tetrahymena thermophila.
    Thatcher TH; Gorovsky MA
    Exp Cell Res; 1993 Dec; 209(2):261-70. PubMed ID: 8262144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regeneration of cilia in starved Tetrahymena thermophila involves induced synthesis of ciliary proteins but not synthesis of membrane lipids.
    Skriver L; Williams NE
    Biochem J; 1980 Jun; 188(3):695-704. PubMed ID: 7470029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.