These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1395138)

  • 21. Tetrahymena IFT122A is not essential for cilia assembly but plays a role in returning IFT proteins from the ciliary tip to the cell body.
    Tsao CC; Gorovsky MA
    J Cell Sci; 2008 Feb; 121(Pt 4):428-36. PubMed ID: 18211962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insulin/FGF-binding ciliary membrane glycoprotein from Tetrahymena.
    Leick V; Bøg-Hansen TC; Juhl HA
    J Membr Biol; 2001 May; 181(1):47-53. PubMed ID: 11331937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dephosphorylation of inner arm 1 is associated with ciliary reversals in Tetrahymena thermophila.
    Deckman CM; Pennock DG
    Cell Motil Cytoskeleton; 2004 Feb; 57(2):73-83. PubMed ID: 14691947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular polarity in ciliates: persistence of global polarity in a disorganized mutant of Tetrahymena thermophila that disrupts cytoskeletal organization.
    Jerka-Dziadosz M; Jenkins LM; Nelsen EM; Williams NE; Jaeckel-Williams R; Frankel J
    Dev Biol; 1995 Jun; 169(2):644-61. PubMed ID: 7781905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Progeny of germ line knockouts of ASI2, a gene encoding a putative signal transduction receptor in Tetrahymena thermophila, fail to make the transition from sexual reproduction to vegetative growth.
    Li S; Yin L; Cole ES; Udani RA; Karrer KM
    Dev Biol; 2006 Jul; 295(2):633-46. PubMed ID: 16712831
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strategies for the isolation of ciliary motility and assembly mutants in Tetrahymena.
    Pennock DG; Gorovsky MA
    Methods Cell Biol; 1995; 47():571-8. PubMed ID: 7476547
    [No Abstract]   [Full Text] [Related]  

  • 27. Mutations in genes encoding inner arm dynein heavy chains in Tetrahymena thermophila lead to axonemal hypersensitivity to Ca2+.
    Liu S; Hennessey T; Rankin S; Pennock DG
    Cell Motil Cytoskeleton; 2005 Nov; 62(3):133-40. PubMed ID: 16173097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Costimulation-induced rounding in Tetrahymena thermophila: early cell shape transformation induced by sexual cell-to-cell collisions between complementary mating types.
    Fujishima M; Tsuda M; Mikami Y; Shinoda K
    Dev Biol; 1993 Jan; 155(1):198-205. PubMed ID: 8416833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deciliation induces phosphorylation of a 90-kDa cortical protein in Tetrahymena thermophila.
    Gitz DL; Pennock DG
    J Eukaryot Microbiol; 1995; 42(6):742-8. PubMed ID: 8520589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell division induced by mechanical stimulation in starved Tetrahymena thermophila: cell cycle without synthesis of macronuclear DNA.
    Iwamoto M; Sugai T; Nakaoka Y
    Cell Biol Int; 2004; 28(7):503-9. PubMed ID: 15261157
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disruption of genes encoding predicted inner arm dynein heavy chains causes motility phenotypes in Tetrahymena.
    Liu S; Hard R; Rankin S; Hennessey T; Pennock DG
    Cell Motil Cytoskeleton; 2004 Nov; 59(3):201-14. PubMed ID: 15468164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Locus-dependent profiles of the rescue of nonexcitable behavioral mutants during conjugation in Tetrahymena thermophila.
    Takahashi M
    Dev Genet; 1992; 13(2):174-9. PubMed ID: 1499159
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ingestion and inactivation of bacteriophages by Tetrahymena.
    Hennemuth W; Rhoads LS; Eichelberger H; Watanabe M; Van Bell KM; Ke L; Kim H; Nguyen G; Jonas JD; Veith D; Van Bell CT
    J Eukaryot Microbiol; 2008; 55(1):44-50. PubMed ID: 18251802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PHLP2 is essential and plays a role in ciliogenesis and microtubule assembly in Tetrahymena thermophila.
    Bregier C; Krzemień-Ojak L; Włoga D; Jerka-Dziadosz M; Joachimiak E; Batko K; Filipiuk I; Smietanka U; Gaertig J; Fabczak S; Fabczak H
    J Cell Physiol; 2013 Nov; 228(11):2175-89. PubMed ID: 23588994
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inner arm dynein 1 is essential for Ca++-dependent ciliary reversals in Tetrahymena thermophila.
    Hennessey TM; Kim DY; Oberski DJ; Hard R; Rankin SA; Pennock DG
    Cell Motil Cytoskeleton; 2002 Dec; 53(4):281-8. PubMed ID: 12378538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein substrates for cGMP-dependent protein phosphorylation in cilia of wild type and atalanta mutants of Paramecium.
    Ann KS; Nelson DL
    Cell Motil Cytoskeleton; 1995; 30(4):252-60. PubMed ID: 7796456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The actin gene ACT1 is required for phagocytosis, motility, and cell separation of Tetrahymena thermophila.
    Williams NE; Tsao CC; Bowen J; Hehman GL; Williams RJ; Frankel J
    Eukaryot Cell; 2006 Mar; 5(3):555-67. PubMed ID: 16524910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of initiation and elongation of cilia during ciliary regeneration in Tetrahymena.
    Hadley GA; Williams NE
    Mol Cell Biol; 1981 Sep; 1(9):865-70. PubMed ID: 9279399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A temperature-sensitive cell cycle arrest mutation affecting H1 phosphorylation and nuclear localization of a small heat shock protein in Tetrahymena thermophila.
    Thatcher TH; Gorovsky MA
    Exp Cell Res; 1993 Dec; 209(2):261-70. PubMed ID: 8262144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regeneration of cilia in starved Tetrahymena thermophila involves induced synthesis of ciliary proteins but not synthesis of membrane lipids.
    Skriver L; Williams NE
    Biochem J; 1980 Jun; 188(3):695-704. PubMed ID: 7470029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.