These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 1395146)

  • 21. Varied truncation and clustering characterize some short repeats identified in micronucleus-specific DNA of Tetrahymena thermophila.
    Huvos P
    Gene; 2009 Dec; 448(2):174-9. PubMed ID: 19619624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of nullisomic chromosome deficiencies on conjugation events in Tetrahymena thermophila: insufficiency of the parental macronucleus to direct postzygotic development.
    Ward JG; Davis MC; Allis CD; Herrick G
    Genetics; 1995 Jul; 140(3):989-1005. PubMed ID: 7672597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization and use of Tetrahymena thermophila artificial chromosome 2 (TtAC2) constructed by biomimetic of macronuclear rDNA minichromosome.
    Çalıseki M; Üstüntanır Dede AF; Arslanyolu M
    Microbiol Res; 2021 Jul; 248():126764. PubMed ID: 33887535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nuclear localization signal targeting to macronucleus and micronucleus in binucleated ciliate Tetrahymena thermophila.
    Iwamoto M; Mori C; Osakada H; Koujin T; Hiraoka Y; Haraguchi T
    Genes Cells; 2018 Jul; 23(7):568-579. PubMed ID: 29882620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of novel chromatin-associated proteins involved in programmed genome rearrangements in Tetrahymena.
    Yao MC; Yao CH; Halasz LM; Fuller P; Rexer CH; Wang SH; Jain R; Coyne RS; Chalker DL
    J Cell Sci; 2007 Jun; 120(Pt 12):1978-89. PubMed ID: 17519286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Developmentally programmed DNA deletion in Tetrahymena thermophila by a transposition-like reaction pathway.
    Saveliev SV; Cox MM
    EMBO J; 1996 Jun; 15(11):2858-69. PubMed ID: 8654384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulatory sequences for the amplification and replication of the ribosomal DNA minichromosome in Tetrahymena thermophila.
    Blomberg P; Randolph C; Yao CH; Yao MC
    Mol Cell Biol; 1997 Dec; 17(12):7237-47. PubMed ID: 9372956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The CNA1 histone of the ciliate Tetrahymena thermophila is essential for chromosome segregation in the germline micronucleus.
    Cervantes MD; Xi X; Vermaak D; Yao MC; Malik HS
    Mol Biol Cell; 2006 Jan; 17(1):485-97. PubMed ID: 16251352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accurate processing and amplification of cloned germ line copies of ribosomal DNA injected into developing nuclei of Tetrahymena thermophila.
    Yao MC; Yao CH
    Mol Cell Biol; 1989 Mar; 9(3):1092-9. PubMed ID: 2725489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Allele-specific, selective amplification of a ribosomal RNA gene in Tetrahymena thermophila.
    Pan WC; Orias E; Flacks M; Blackburn EH
    Cell; 1982 Mar; 28(3):595-604. PubMed ID: 6280878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Depletion of UBC9 Causes Nuclear Defects during the Vegetative and Sexual Life Cycles in Tetrahymena thermophila.
    Yang Q; Nasir AM; Coyne RS; Forney JD
    Eukaryot Cell; 2015 Dec; 14(12):1240-52. PubMed ID: 26453653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TIF1 Represses rDNA replication initiation, but promotes normal S phase progression and chromosome transmission in Tetrahymena.
    Morrison TL; Yakisich JS; Cassidy-Hanley D; Kapler GM
    Mol Biol Cell; 2005 Jun; 16(6):2624-35. PubMed ID: 15772155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amplification of tandemly repeated origin control sequences confers a replication advantage on rDNA replicons in Tetrahymena thermophila.
    Yu GL; Blackburn EH
    Mol Cell Biol; 1990 May; 10(5):2070-80. PubMed ID: 2325646
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The transition from conjugal development to the first vegetative cell division is dependent on RAD51 expression in the ciliate Tetrahymena thermophila.
    Marsh TC; Cole ES; Romero DP
    Genetics; 2001 Apr; 157(4):1591-8. PubMed ID: 11290715
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolutionary conservation of sequences directing chromosome breakage and rDNA palindrome formation in tetrahymenine ciliates.
    Coyne RS; Yao MC
    Genetics; 1996 Dec; 144(4):1479-87. PubMed ID: 8978037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Construction and dynamic characterization of a Tetrahymena thermophila macronuclear artificial chromosome.
    Üstüntanır Dede AF; Arslanyolu M
    Gene; 2020 Jul; 748():144697. PubMed ID: 32325092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Germline and somatic transformation of mating Tetrahymena thermophila by particle bombardment.
    Cassidy-Hanley D; Bowen J; Lee JH; Cole E; VerPlank LA; Gaertig J; Gorovsky MA; Bruns PJ
    Genetics; 1997 May; 146(1):135-47. PubMed ID: 9136007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developmental regulation of DNA replication: replication fork barriers and programmed gene amplification in Tetrahymena thermophila.
    Zhang Z; Macalpine DM; Kapler GM
    Mol Cell Biol; 1997 Oct; 17(10):6147-56. PubMed ID: 9315675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The replication advantage of a free linear rRNA gene is restored by somatic recombination in Tetrahymena thermophila.
    Yaeger PC; Orias E; Shaiu WL; Larson DD; Blackburn EH
    Mol Cell Biol; 1989 Feb; 9(2):452-60. PubMed ID: 2710110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transformation of Tetrahymena thermophila by microinjection of ribosomal RNA genes.
    Tondravi MM; Yao MC
    Proc Natl Acad Sci U S A; 1986 Jun; 83(12):4369-73. PubMed ID: 3459180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.