These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 13953246)

  • 41. [Use of rifampicin for directed modification of the nucleotide composition of the cells of Bacillus megaterium and Candida utilis].
    Rabotnova IL; Shul'govskaia EM; Pozmogova In; Kuznetsov LE; Ibragimova SI
    Mikrobiologiia; 1983; 52(1):87-93. PubMed ID: 6188945
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The ribitol teichoic acid from Lactobacillus arabinosus Walls: isolation and structure of ribitol glucosides.
    ARCHIBALD AR; BADDILEY J; BUCHANAN JG
    Biochem J; 1961 Oct; 81(1):124-34. PubMed ID: 13862085
    [No Abstract]   [Full Text] [Related]  

  • 43. THE INTERRELATIONSHIP BETWEEN MUCOPEPTIDE AND RIBITOL TEICHOIC ACID FORMATION AS SHOWN BY THE EFFECT OF INHIBITORS.
    ROGERS HJ; GARRETT AJ
    Biochem J; 1965 Jul; 96(1):231-43. PubMed ID: 14343137
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of growth condition on the concentration of potassium in Bacillus subtilis var. niger and its possible relationship to cellular ribonucleic acid, teichoic acid and teichuronic acid.
    Tempest DW; Dicks JW; Ellwood DC
    Biochem J; 1968 Jan; 106(1):237-43. PubMed ID: 4976492
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Possible inhibitory effect of teichoic acid on Bacillus subtilis transfer ribonucleic acid.
    Youatt J; Montoya A; Nester EW
    Biochem J; 1970 Sep; 119(2):317-21. PubMed ID: 4992319
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direction of chain extension during the biosynthesis of teichoic acids in bacterial cell walls.
    Hussey H; Brooks D; Baddiley J
    Nature; 1969 Feb; 221(5181):665-6. PubMed ID: 5774942
    [No Abstract]   [Full Text] [Related]  

  • 47. Breakdown of pulse-labeled ribonucleic acid and polysomes in Bacillus megaterium: actions of streptolydigin, echinomycin, and triostins.
    Waring M; Makoff A
    Mol Pharmacol; 1974 Mar; 10(2):214-24. PubMed ID: 4211843
    [No Abstract]   [Full Text] [Related]  

  • 48. Inhibition of RNA synthesis in Chlorella pyrenoidosa and Bacillus megaterium by the pine-blight toxin, dothistromin.
    Harvey AM; Batt RD; Pritchard GG
    J Gen Microbiol; 1976 Aug; 96(2):268-76. PubMed ID: 822126
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanism of olivomycin action.
    Gauze GG; Loshkareva NP; Dudnik YV
    Fed Proc Transl Suppl; 1966; 25(2):329-32. PubMed ID: 4956673
    [No Abstract]   [Full Text] [Related]  

  • 50. [Structure of the peptidoglycans of bacterial cell walls].
    Klein A; Rais A
    Postepy Biochem; 1972; 18(2):225-40. PubMed ID: 4262154
    [No Abstract]   [Full Text] [Related]  

  • 51. Teichoic acids in cell walls and membranes of bacteria.
    Baddiley J
    Essays Biochem; 1972; 8():35-77. PubMed ID: 4567535
    [No Abstract]   [Full Text] [Related]  

  • 52. [Physiologo-biochemical properties of a chemostatic culture of Bacillus megaterium at different pH values].
    Sakharova ZV; Rabotnova IL
    Mikrobiologiia; 1977; 46(1):15-20. PubMed ID: 16198
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nucleotide sequence of Bacillus megaterium 5 S RNA.
    Pribula CD; Fox GE; Woese CR; Sogin M; Pace N
    FEBS Lett; 1974 Aug; 44(3):322-3. PubMed ID: 4213268
    [No Abstract]   [Full Text] [Related]  

  • 54. Correlation of maximal growth temperature and ribosome heat stability.
    Pace B; Campbell LL
    Proc Natl Acad Sci U S A; 1967 Apr; 57(4):1110-6. PubMed ID: 4962250
    [No Abstract]   [Full Text] [Related]  

  • 55. Cloning and nucleotide sequence of the Bacillus megaterium gene coding for small, acid-soluble spore protein B.
    Hackett RH; Setlow B; Setlow P
    J Bacteriol; 1986 Nov; 168(2):1023-5. PubMed ID: 2430935
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria.
    Schneewind O; Missiakas D
    J Bacteriol; 2014 Mar; 196(6):1133-42. PubMed ID: 24415723
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Teichoic acid and lipid metabolism during sporulation of Bacillus megaterium KM.
    Johnstone K; Simion FA; Ellar DJ
    Biochem J; 1982 Feb; 202(2):459-67. PubMed ID: 6807293
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The membrane teichoic acid of Staphylococcus lactis I3.
    Archibald AR; Baddiley J; Button D
    Biochem J; 1968 Dec; 110(3):559-63. PubMed ID: 5701687
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of galactose or glucose-1-phosphate in preventing the lysis of Streptococcus diacetilactis.
    Moustafa HH; Collins EB
    J Bacteriol; 1968 Feb; 95(2):592-602. PubMed ID: 5640384
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The function of teichoic acids in cation control in bacterial membranes.
    Hughes AH; Hancock IC; Baddiley J
    Biochem J; 1973 Jan; 132(1):83-93. PubMed ID: 4722902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.