These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 13956133)

  • 1. Metabolism of sulfate by the chromatophore of Rhodospirillum.
    IBANEZ ML; LINDSTROM ES
    J Bacteriol; 1962 Sep; 84(3):451-5. PubMed ID: 13956133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenosine-5'-phosphosulfate (APS) as sulfate donor for assimilatory sulfate reduction in Rhodospirillum rubrum.
    Schmidt A
    Arch Microbiol; 1977 Apr; 112(3):263-70. PubMed ID: 16577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. POSSIBLE PARTIAL REACTIONS OF THE PHOTOPHOSPHORYLATION PROCESS IN CHROMATOPHORES FROM RHODOSPIRILLUM RUBRUM.
    HORIO T; NISHIKAWA K; KATSUMATA M; YAMASHITA J
    Biochim Biophys Acta; 1965 Mar; 94():371-82. PubMed ID: 14314346
    [No Abstract]   [Full Text] [Related]  

  • 4. ADENOSINE DIPHOSPHATE-ADENOSINE TRIPHOSPHATE EXCHANGE REACTION WITH CHROMATOPHORES FROM RHODOSPIRILLUM RUBRUM.
    HORIO T; NISHKAWA K; YAMASHITA J
    J Biochem; 1964 Mar; 55():327-32. PubMed ID: 14162515
    [No Abstract]   [Full Text] [Related]  

  • 5. Postillumination adenosine triphosphate synthesis in Rhodospirillum rubrum chromatophores. I. Conditions for maximal yields.
    Leiser M; Gromet-Elhanan Z
    J Biol Chem; 1975 Jan; 250(1):84-9. PubMed ID: 237896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and photochemical activity of chlorophyll-containing particles from Rhodospirillum rubrum.
    FRENKEL AW; HICKMAN DD
    J Biophys Biochem Cytol; 1959 Oct; 6(2):285-90. PubMed ID: 13824882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the light-dependent synthesis of inorganic pyrophosphate by Rhodospirillum rubrum chromatophores.
    Guillory RJ; Fisher RR
    Biochem J; 1972 Sep; 129(2):571-81. PubMed ID: 4345276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of inorganic sulfate activation in filamentous fungi. Allosteric inhibition of ATP sulfurylase by 3'-phosphoadenosine-5'-phosphosulfate.
    Renosto F; Martin RL; Wailes LM; Daley LA; Segel IH
    J Biol Chem; 1990 Jun; 265(18):10300-8. PubMed ID: 2162344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic adenosine triphosphate formation and photo-reduction of diphosphopyridine nucleotide with chromatophores of Rhodospirillum rubrum.
    HORIO T; YAMASHITA J; NISHIKAWA K
    Biochim Biophys Acta; 1963 Jan; 66():37-49. PubMed ID: 13954899
    [No Abstract]   [Full Text] [Related]  

  • 10. Thioredoxin or glutaredoxin in Escherichia coli is essential for sulfate reduction but not for deoxyribonucleotide synthesis.
    Russel M; Model P; Holmgren A
    J Bacteriol; 1990 Apr; 172(4):1923-9. PubMed ID: 2180911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulation of thiol contents in plants.
    Höfgen R; Kreft O; Willmitzer L; Hesse H
    Amino Acids; 2001; 20(3):291-9. PubMed ID: 11354605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and purification of an active gamma-subunit of the F0.F1-ATP synthase from chromatophore membranes of Rhodospirillum rubrum. The role of gamma in ATP synthesis and hydrolysis as compared to proton translocation.
    Khananshvili D; Gromet-Elhanan Z
    J Biol Chem; 1982 Oct; 257(19):11377-83. PubMed ID: 6181058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of electron donors and acceptors on light-induced absorbance changes and photophosphorylation in Rhodospirillum rubrum chromatophores.
    Silberstein BR; Epel BL; Malkin S; Gromet-Elhanan Z
    Eur J Biochem; 1977 Oct; 80(1):135-41. PubMed ID: 411652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on bacterial photophosphorylation. I. Kinetics of photophosphorylation in Rhodospirillum rubrum chromatophores by flashing light.
    NISHIMURA M
    Biochim Biophys Acta; 1962 Feb; 57():88-95. PubMed ID: 14479977
    [No Abstract]   [Full Text] [Related]  

  • 15. Photosynthetic regeneration of ATP using bacterial chromatophores.
    Pace GW; Yang HS; Tannenbaum SR; Archer MC
    Biotechnol Bioeng; 1976 Oct; 18(10):1413-23. PubMed ID: 822897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further studies on the formation of choline sulfate by bacteria.
    Fitzgerald JW; Luschinski PC
    Can J Microbiol; 1977 May; 23(5):483-90. PubMed ID: 871964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and possible character of a high-energy intermediate in bacterial photophosphorylation.
    Horio T; Nishikawa K; Yamashita J
    Biochem J; 1966 Jan; 98(1):321-9. PubMed ID: 5938657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on bacterial photophosphorylation. II. Effects of reagents and temperature on light-induced and dark phases of photophosphorylation in Rhodospirillum rubrum chromatophores.
    NISHIMURA M
    Biochim Biophys Acta; 1962 Feb; 57():96-103. PubMed ID: 14479978
    [No Abstract]   [Full Text] [Related]  

  • 19. Light-dependent ATP formation in a non-phototrophic mutant of Rhodospirillum rubrum deficient in oxygen photoreduction.
    dell Valle-Tascón S; Giménez-Gallego G; Ramírez JM
    Biochem Biophys Res Commun; 1975 Sep; 66(2):514-9. PubMed ID: 810144
    [No Abstract]   [Full Text] [Related]  

  • 20. LIGHT STIMULATION OF THE RESPIRATORY ACTIVITY OF RHODOSPIRILLUM RUBRUM CHROMATOPHORES.
    KIKUCHI G; YAMADA H; SATO H
    Biochim Biophys Acta; 1964 May; 79():446-55. PubMed ID: 14179444
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.