These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 13962679)

  • 1. Oxidative phosphorylation in fractionated bacterial systems. X. Different roles for the natural quinones of Escherichia coli W in oxidative metabolism.
    KASHKET ER; BRODIE AF
    J Biol Chem; 1963 Jul; 238():2564-70. PubMed ID: 13962679
    [No Abstract]   [Full Text] [Related]  

  • 2. OXIDATIVE PHOSPHORYLATION IN FRACTIONATED BACTERIAL SYSTEMS. VIII. ROLE OF PARTICULATE AND SOLUBLE FRACTIONS FROM ESCHERICHIA COLI.
    KASHKET ER; BRODIE AF
    Biochim Biophys Acta; 1963 Oct; 78():52-65. PubMed ID: 14098183
    [No Abstract]   [Full Text] [Related]  

  • 3. OXIDATIVE PHOSPHORYLATION IN FRACTIONATED BACTERIAL SYSTEMS. XV. REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE-LINKED PHOSPHORYLATION.
    MURTHY PS; BRODIE AF
    J Biol Chem; 1964 Dec; 239():4292-7. PubMed ID: 14247684
    [No Abstract]   [Full Text] [Related]  

  • 4. OXIDATIVE PHOSPHORYLATION IN FRACTIONATED BACTERIAL SYSTEMS. XIV. RESPIRATORY CHAINS OF MYCOBACTERIUM PHLEI.
    ASANO A; BRODIE AF
    J Biol Chem; 1964 Dec; 239():4280-91. PubMed ID: 14247683
    [No Abstract]   [Full Text] [Related]  

  • 5. THE ROLE OF LIPOPHILIC QUINONES IN THE ELECTRON TRANSPORT SYSTEM OF ESCHERICHIA COLI.
    ITAGAKI E
    J Biochem; 1964 Apr; 55():432-45. PubMed ID: 14170096
    [No Abstract]   [Full Text] [Related]  

  • 6. [Biological function of quinones].
    Drabikowska AK
    Postepy Biochem; 1969; 15(1):65-81. PubMed ID: 4307843
    [No Abstract]   [Full Text] [Related]  

  • 7. Vitamin K and other quinones as coenzymes in oxidative phosphorylation in bacterial systems.
    BRODIE AF
    Fed Proc; 1961 Dec; 20():995-1004. PubMed ID: 13873298
    [No Abstract]   [Full Text] [Related]  

  • 8. The use of mutants of Escherichia coli K12 in studying electron transport and oxidative phosphorylation.
    Gibson F; Cox GB
    Essays Biochem; 1973; 9():1-29. PubMed ID: 4149255
    [No Abstract]   [Full Text] [Related]  

  • 9. STUDIES ON OXIDATIVE PHOSPHORYLATION. X. A COUPLING ENZYME WHICH ACTIVATES REVERSED ELECTRON TRANSFER.
    ANDREOLI TE; LAM KW; SANADI DR
    J Biol Chem; 1965 Jun; 240():2644-53. PubMed ID: 14304880
    [No Abstract]   [Full Text] [Related]  

  • 10. COENZYME Q (UBIQUINONE).
    HATEFI Y
    Adv Enzymol Relat Subj Biochem; 1963; 25():275-328. PubMed ID: 14149679
    [No Abstract]   [Full Text] [Related]  

  • 11. RECENT ADVANCES IN ELECTRON TRANSFER AND OXIDATIVE PHOSPHORYLATION.
    HATEFI Y
    Clin Chem; 1965 Feb; 11():SUPPL:198-212. PubMed ID: 14256872
    [No Abstract]   [Full Text] [Related]  

  • 12. UNCOUPLING OF MITOCHONDRIAL AND BACTERIAL RESPIRATION BY BETA-NITROSTYRENES AND BENZAL MALONONITRILES.
    BOVELL CR; PACKER L; SCHONBAUM GR
    Arch Biochem Biophys; 1964 Mar; 104():458-67. PubMed ID: 14161015
    [No Abstract]   [Full Text] [Related]  

  • 13. One-electron-transfer reactions in biochemical systems. 3. One-electron reduction of quinones by microsomal flavin enzymes.
    Iyanagi T; Yamazaki I
    Biochim Biophys Acta; 1969 Apr; 172(3):370-81. PubMed ID: 4388705
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies on electron transport and energy-linked reactions using mutants of Escherichia coli.
    Cox GB; Gibson F
    Biochim Biophys Acta; 1974 Apr; 346(1):1-25. PubMed ID: 4151653
    [No Abstract]   [Full Text] [Related]  

  • 15. THE EFFECT OF QUINONES ON MITOCHONDRIAL PHOSPHORYLATION, PI-ATP EXCHANGE, AND ATPASE ACTIVITIES. I. PHYLLOQUINONE AND MENADIONE.
    DALLAM RD; HAMILTON JW
    Arch Biochem Biophys; 1964 Jun; 105():630-3. PubMed ID: 14236650
    [No Abstract]   [Full Text] [Related]  

  • 16. [Effect of methyl-1, 4-benzoquinones on respiration and oxidative phosphorylation].
    FREYRE HA; ARDAO MI
    An Fac Med Univ Repub Montev Urug; 1959; 44():281-4. PubMed ID: 13824961
    [No Abstract]   [Full Text] [Related]  

  • 17. Reduction of 2-methoxy-1,4-naphtoquinone by mitochondrially-localized Nqo1 yielding NAD
    Ravasz D; Kacso G; Fodor V; Horvath K; Adam-Vizi V; Chinopoulos C
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):909-924. PubMed ID: 29746824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitamin K-dependent nitrate reductase in Escherichia coli.
    MEDINA A; DE HEREDIA CF
    Biochim Biophys Acta; 1958 May; 28(2):452-3. PubMed ID: 13535753
    [No Abstract]   [Full Text] [Related]  

  • 19. OXIDATIVE PHOSPHORYLATION COUPLED WITH NITRATE RESPIRATION. II. PHOSPHORYLATION COUPLED WITH ANAEROBIC NITRATE REDUCTION IN A CELL-FREE EXTRACT OF ESCHERICHIA COLI.
    OTA A; YAMANAKA T; OKUNUKI K
    J Biochem; 1964 Feb; 55():131-5. PubMed ID: 14135451
    [No Abstract]   [Full Text] [Related]  

  • 20. Four quinone reduction sites in the NADH dehydrogenase complex.
    Ruzicka FJ; Crane FL
    Biochem Biophys Res Commun; 1970 Jan; 38(2):249-54. PubMed ID: 4313928
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.