These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 1396595)
1. Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. Georgakopoulos T; Thireos G EMBO J; 1992 Nov; 11(11):4145-52. PubMed ID: 1396595 [TBL] [Abstract][Full Text] [Related]
2. A new class of yeast transcriptional activators. Ma J; Ptashne M Cell; 1987 Oct; 51(1):113-9. PubMed ID: 3115591 [TBL] [Abstract][Full Text] [Related]
3. Adenovirus E1A requires the yeast SAGA histone acetyltransferase complex and associates with SAGA components Gcn5 and Tra1. Kulesza CA; Van Buskirk HA; Cole MD; Reese JC; Smith MM; Engel DA Oncogene; 2002 Feb; 21(9):1411-22. PubMed ID: 11857084 [TBL] [Abstract][Full Text] [Related]
4. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Grant PA; Duggan L; Côté J; Roberts SM; Brownell JE; Candau R; Ohba R; Owen-Hughes T; Allis CD; Winston F; Berger SL; Workman JL Genes Dev; 1997 Jul; 11(13):1640-50. PubMed ID: 9224714 [TBL] [Abstract][Full Text] [Related]
5. Structural and functional analysis of yeast putative adaptors. Evidence for an adaptor complex in vivo. Candau R; Berger SL J Biol Chem; 1996 Mar; 271(9):5237-45. PubMed ID: 8617808 [TBL] [Abstract][Full Text] [Related]
6. Identification, mutational analysis, and coactivator requirements of two distinct transcriptional activation domains of the Saccharomyces cerevisiae Hap4 protein. Stebbins JL; Triezenberg SJ Eukaryot Cell; 2004 Apr; 3(2):339-47. PubMed ID: 15075264 [TBL] [Abstract][Full Text] [Related]
7. Cloning of Drosophila GCN5: conserved features among metazoan GCN5 family members. Smith ER; Belote JM; Schiltz RL; Yang XJ; Moore PA; Berger SL; Nakatani Y; Allis CD Nucleic Acids Res; 1998 Jun; 26(12):2948-54. PubMed ID: 9611240 [TBL] [Abstract][Full Text] [Related]
8. GCN5 dependence of chromatin remodeling and transcriptional activation by the GAL4 and VP16 activation domains in budding yeast. Stafford GA; Morse RH Mol Cell Biol; 2001 Jul; 21(14):4568-78. PubMed ID: 11416135 [TBL] [Abstract][Full Text] [Related]
9. The Gcn5.Ada complex potentiates the histone acetyltransferase activity of Gcn5. Syntichaki P; Thireos G J Biol Chem; 1998 Sep; 273(38):24414-9. PubMed ID: 9733731 [TBL] [Abstract][Full Text] [Related]
10. Genetic evidence for the interaction of the yeast transcriptional co-activator proteins GCN5 and ADA2. Georgakopoulos T; Gounalaki N; Thireos G Mol Gen Genet; 1995 Mar; 246(6):723-8. PubMed ID: 7898440 [TBL] [Abstract][Full Text] [Related]
11. GCN5-dependent histone H3 acetylation and RPD3-dependent histone H4 deacetylation have distinct, opposing effects on IME2 transcription, during meiosis and during vegetative growth, in budding yeast. Burgess SM; Ajimura M; Kleckner N Proc Natl Acad Sci U S A; 1999 Jun; 96(12):6835-40. PubMed ID: 10359799 [TBL] [Abstract][Full Text] [Related]
12. Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Wang L; Liu L; Berger SL Genes Dev; 1998 Mar; 12(5):640-53. PubMed ID: 9499400 [TBL] [Abstract][Full Text] [Related]
13. Identification of human proteins functionally conserved with the yeast putative adaptors ADA2 and GCN5. Candau R; Moore PA; Wang L; Barlev N; Ying CY; Rosen CA; Berger SL Mol Cell Biol; 1996 Feb; 16(2):593-602. PubMed ID: 8552087 [TBL] [Abstract][Full Text] [Related]
14. Regulation of yeast COX6 by the general transcription factor ABF1 and separate HAP2- and heme-responsive elements. Trawick JD; Kraut N; Simon FR; Poyton RO Mol Cell Biol; 1992 May; 12(5):2302-14. PubMed ID: 1314953 [TBL] [Abstract][Full Text] [Related]
15. Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors. Marcus GA; Silverman N; Berger SL; Horiuchi J; Guarente L EMBO J; 1994 Oct; 13(20):4807-15. PubMed ID: 7957049 [TBL] [Abstract][Full Text] [Related]
16. CDC39, an essential nuclear protein that negatively regulates transcription and differentially affects the constitutive and inducible HIS3 promoters. Collart MA; Struhl K EMBO J; 1993 Jan; 12(1):177-86. PubMed ID: 8428577 [TBL] [Abstract][Full Text] [Related]
17. The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Drysdale CM; Dueñas E; Jackson BM; Reusser U; Braus GH; Hinnebusch AG Mol Cell Biol; 1995 Mar; 15(3):1220-33. PubMed ID: 7862116 [TBL] [Abstract][Full Text] [Related]
18. A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. Martinez E; Kundu TK; Fu J; Roeder RG J Biol Chem; 1998 Sep; 273(37):23781-5. PubMed ID: 9726987 [TBL] [Abstract][Full Text] [Related]
19. Molecular analysis of GCN3, a translational activator of GCN4: evidence for posttranslational control of GCN3 regulatory function. Hannig EM; Hinnebusch AG Mol Cell Biol; 1988 Nov; 8(11):4808-20. PubMed ID: 3062370 [TBL] [Abstract][Full Text] [Related]
20. Identification of seven hydrophobic clusters in GCN4 making redundant contributions to transcriptional activation. Jackson BM; Drysdale CM; Natarajan K; Hinnebusch AG Mol Cell Biol; 1996 Oct; 16(10):5557-71. PubMed ID: 8816468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]