These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 13966260)

  • 21. Effect of ferredoxin on bacterial photophosphorylation.
    Shanmugam KT; Arnon DI
    Biochim Biophys Acta; 1972 Feb; 256(2):487-97. PubMed ID: 4622736
    [No Abstract]   [Full Text] [Related]  

  • 22. Bacterial photophosphorylation: regulation by redox balance.
    BOSE SK; GEST H
    Proc Natl Acad Sci U S A; 1963 Mar; 49(3):337-45. PubMed ID: 14014157
    [No Abstract]   [Full Text] [Related]  

  • 23. Photosynthetic phosphorylation catalyzed by factors isolated from photosynthetic organisms.
    BLACK CC; SAN PIETRO A; LIMBACH D; NORRIS G
    Proc Natl Acad Sci U S A; 1963 Jul; 50(1):37-43. PubMed ID: 13971358
    [No Abstract]   [Full Text] [Related]  

  • 24. Photosynthetic adenosine triphosphate formation and photo-reduction of diphosphopyridine nucleotide with chromatophores of Rhodospirillum rubrum.
    HORIO T; YAMASHITA J; NISHIKAWA K
    Biochim Biophys Acta; 1963 Jan; 66():37-49. PubMed ID: 13954899
    [No Abstract]   [Full Text] [Related]  

  • 25. ADENOSINE DIPHOSPHATE-ADENOSINE TRIPHOSPHATE EXCHANGE REACTION WITH CHROMATOPHORES FROM RHODOSPIRILLUM RUBRUM.
    HORIO T; NISHKAWA K; YAMASHITA J
    J Biochem; 1964 Mar; 55():327-32. PubMed ID: 14162515
    [No Abstract]   [Full Text] [Related]  

  • 26. Photoinactivation of photophosphorylation and dark ATPase in Rhodospirillum rubrum chromatophores.
    Slooten L; Sybesma C
    Biochim Biophys Acta; 1976 Dec; 449(3):565-80. PubMed ID: 11818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and possible character of a high-energy intermediate in bacterial photophosphorylation.
    Horio T; Nishikawa K; Yamashita J
    Biochem J; 1966 Jan; 98(1):321-9. PubMed ID: 5938657
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Macromolecular variation in the chromatophores of the photosynthetic bacterium Rhodospirillum rubrum.
    NEWTON JW
    Biochim Biophys Acta; 1960 Jul; 42():34-43. PubMed ID: 13728692
    [No Abstract]   [Full Text] [Related]  

  • 29. ELOVICH DECAY OF FREE RADICALS IN A PHOTOSYNTHETIC SYSTEM AS EVIDENCE FOR ELECTRON TRANSPORT ACROSS AN INTERFACIAL ACTIVATION ENERGY BARRIER.
    COPE FW
    Proc Natl Acad Sci U S A; 1964 May; 51(5):809-10. PubMed ID: 14172995
    [No Abstract]   [Full Text] [Related]  

  • 30. Steady-state measurements of delta pH and delta psi in Rhodospirillum rubrum chromatophores by two different methods. Comparison with phosphorylation potential.
    Cirillo VP; Gromet-Elhanan Z
    Biochim Biophys Acta; 1981 Jul; 636(2):244-53. PubMed ID: 6793067
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Uncouplers can shuttle between localized energy-coupling sites during photophosphorylation by chromatophores of Rhodopseudomonas capsulata N22.
    Hitchens GD; Kell DB
    Biochem J; 1983 Apr; 212(1):25-30. PubMed ID: 6870853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A CONTRIBUTION TO THE UNDERSTANDING OF THE PRIMARY QUANTUM CONVERSION IN PHOTOSYNTHESIS.
    RUBY RH; KUNTZ ID; CALVIN M
    Bull Soc Chim Biol (Paris); 1964; 46():1595-605. PubMed ID: 14270542
    [No Abstract]   [Full Text] [Related]  

  • 33. Studies on the light-dependent synthesis of inorganic pyrophosphate by Rhodospirillum rubrum chromatophores.
    Guillory RJ; Fisher RR
    Biochem J; 1972 Sep; 129(2):571-81. PubMed ID: 4345276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Activation and inhibition of photoinduced proton absorption in Rhodospirillum rubrum chromatophores by detergents and solvents].
    Shaposhnikova MG; Pakshina EV; Shubin VV; KrasnovskiÄ­ AA
    Biofizika; 1979; 24(3):554-5. PubMed ID: 37926
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Cyclic electron transfer and membrane potential generation in chromatophores on non-sulfur bacteria Rhodospirillum rubrum].
    Remennikov VG; Samuilov VD
    Biokhimiia; 1980 Jul; 45(7):1298-304. PubMed ID: 6783130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ionic effects on the photochemical activity of bacterial chromatophores.
    NEWTON JW
    Proc Natl Acad Sci U S A; 1963 Jun; 49(6):866-70. PubMed ID: 13938283
    [No Abstract]   [Full Text] [Related]  

  • 37. TRANSIENT EPR AND ABSORBENCE CHANGES IN PHOTPSYNTHETIC BACTERIA.
    RUBY RH; KUNTZ ID; CALVIN M
    Proc Natl Acad Sci U S A; 1964 Mar; 51(3):515-20. PubMed ID: 14171949
    [No Abstract]   [Full Text] [Related]  

  • 38. Studies on bacterial photophosphorylation. III. A sensitive and rapid method of determination of photophosphorylation.
    NISHIMURA M; ITO T; CHANCE B
    Biochim Biophys Acta; 1962 May; 59():177-82. PubMed ID: 14479975
    [No Abstract]   [Full Text] [Related]  

  • 39. Inhibition studies of photophosphorylation by Rhodospilillum rubrum chromatophores with particular concerns to antimycin-resistant photophosphorylation in the presence of artificial electron carriers.
    Sato H; Takahashi K; Kikuchi G
    Biochim Biophys Acta; 1966 Jan; 112(1):8-18. PubMed ID: 5947901
    [No Abstract]   [Full Text] [Related]  

  • 40. Studies on bacterial photophosphorylation. IV. On the maximum amount of delayed photophosphorylation induced by a single flash.
    NISHIMURA M
    Biochim Biophys Acta; 1962 May; 59():183-8. PubMed ID: 14479979
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.