These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 1396667)
1. The interaction of acetate and formate with cobalt carbonic anhydrase. An NMR study. Bertini I; Luchinat C; Pierattelli R; Vila AJ Eur J Biochem; 1992 Sep; 208(3):607-15. PubMed ID: 1396667 [TBL] [Abstract][Full Text] [Related]
2. Interaction of cobalt-bovine carbonic anhydrase with the acetate ion. Bertini I; Luchinat C; Scozzafava A Biochim Biophys Acta; 1976 Nov; 452(1):239-44. PubMed ID: 825144 [TBL] [Abstract][Full Text] [Related]
3. 1H nuclear magnetic resonance investigation of cobalt(II) substituted carbonic anhydrase. Banci L; Dugad LB; La Mar GN; Keating KA; Luchinat C; Pierattelli R Biophys J; 1992 Aug; 63(2):530-43. PubMed ID: 1420895 [TBL] [Abstract][Full Text] [Related]
4. Strategies of signal assignments in paramagnetic metalloproteins. An NMR investigation of the thiocyanate adduct of the cobalt (II)-substituted human carbonic anhydrase II. Bertini I; Jonsson BH; Luchinat C; Pierattelli R; Vila AJ J Magn Reson B; 1994 Jul; 104(3):230-9. PubMed ID: 8069483 [TBL] [Abstract][Full Text] [Related]
5. Paramagnetic 1H and 13C NMR studies on cobalt-substituted human carbonic anhydrase I carboxymethylated at active site histidine-200: molecular basis for the changes in catalytic properties induced by the modification. Khalifah RG; Rogers JI; Harmon P; Morely PJ; Carroll SB Biochemistry; 1984 Jul; 23(14):3129-36. PubMed ID: 6432037 [TBL] [Abstract][Full Text] [Related]
6. Structural characterization of the active site of Brucella abortus Cu-Zn superoxide dismutase: a 15N and 1H NMR investigation. Chen YL; Park S; Thornburg RW; Tabatabai LB; Kintanar A Biochemistry; 1995 Sep; 34(38):12265-75. PubMed ID: 7547969 [TBL] [Abstract][Full Text] [Related]
7. Protonation and reactivity towards carbon dioxide of the mononuclear tetrahedral zinc and cobalt hydroxide complexes, [Tp(Bu)t(,Me)]ZnOH and [Tp(Bu)t(,Me)]CoOH: comparison of the reactivity of the metal hydroxide function in synthetic analogues of carbonic anhydrase. Bergquist C; Fillebeen T; Morlok MM; Parkin G J Am Chem Soc; 2003 May; 125(20):6189-99. PubMed ID: 12785851 [TBL] [Abstract][Full Text] [Related]
9. A closer look at the active site of gamma-class carbonic anhydrases: high-resolution crystallographic studies of the carbonic anhydrase from Methanosarcina thermophila. Iverson TM; Alber BE; Kisker C; Ferry JG; Rees DC Biochemistry; 2000 Aug; 39(31):9222-31. PubMed ID: 10924115 [TBL] [Abstract][Full Text] [Related]
10. Investigation of the mechanism of ligand binding with cobalt(II) human carbonic anhydrase by 1 H and 19 F nuclear magnetic resonance spectroscopy. Taylor PW; Feeney J; Burgen AS Biochemistry; 1971 Oct; 10(21):3866-75. PubMed ID: 5003665 [No Abstract] [Full Text] [Related]
11. Histidine-200 alters inhibitor binding in human carbonic anhydrase B. A carbon-13 nuclear magnetic resonance identification. Khalifah RG Biochemistry; 1977 May; 16(10):2236-40. PubMed ID: 405036 [TBL] [Abstract][Full Text] [Related]
12. Identification of metal-binding residues in the Klebsiella aerogenes urease nickel metallochaperone, UreE. Colpas GJ; Brayman TG; Ming LJ; Hausinger RP Biochemistry; 1999 Mar; 38(13):4078-88. PubMed ID: 10194322 [TBL] [Abstract][Full Text] [Related]
13. Formate as an NMR probe of anion binding to Cu,Zn and Cu,Co bovine erythrocyte superoxide dismutases. Sette M; Paci M; Desideri A; Rotilio G Biochemistry; 1992 Dec; 31(49):12410-5. PubMed ID: 1463727 [TBL] [Abstract][Full Text] [Related]
14. The solution structure refinement of the paramagnetic reduced high-potential iron-sulfur protein I from Ectothiorhodospira halophila by using stable isotope labeling and nuclear relaxation. Bertini I; Couture MM; Donaire A; Eltis LD; Felli IC; Luchinat C; Piccioli M; Rosato A Eur J Biochem; 1996 Oct; 241(2):440-52. PubMed ID: 8917441 [TBL] [Abstract][Full Text] [Related]
15. Drug-biomolecule interactions: mechanism of ligand interactions with carbonic anhydrase studied by magnetic resonance relaxation and rapid reaction methods. Taylor P J Pharm Sci; 1975 Mar; 64(3):501-7. PubMed ID: 239192 [TBL] [Abstract][Full Text] [Related]
16. Interaction of sulphate and chloride with cobalt(II)-carbonic anhydrase. Moratal JM; Donaire A; Salgado J; Martinez-Ferrer MJ J Inorg Biochem; 1990 Nov; 40(3):245-53. PubMed ID: 2127282 [TBL] [Abstract][Full Text] [Related]
17. Structural influence of hydrophobic core residues on metal binding and specificity in carbonic anhydrase II. Cox JD; Hunt JA; Compher KM; Fierke CA; Christianson DW Biochemistry; 2000 Nov; 39(45):13687-94. PubMed ID: 11076507 [TBL] [Abstract][Full Text] [Related]
18. Structure of cobalt carbonic anhydrase complexed with bicarbonate. HÃ¥kansson K; Wehnert A J Mol Biol; 1992 Dec; 228(4):1212-8. PubMed ID: 1474587 [TBL] [Abstract][Full Text] [Related]
19. Proton magnetic resonance studies of carbonic anhydrase. II. Group controlling catalytic activity. Pesando JM Biochemistry; 1975 Feb; 14(4):681-8. PubMed ID: 234739 [TBL] [Abstract][Full Text] [Related]
20. Cyanide binding to Cu, Zn superoxide dismutase. An NMR study of the Cu(II), Co(II) derivative. Paci M; Desideri A; Rotilio G J Biol Chem; 1988 Jan; 263(1):162-6. PubMed ID: 3335495 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]