These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1396675)

  • 61. Aging of the erythrocyte. XIX. Decrease in surface charge density of bovine erythrocytes.
    Bartosz G; Grzelinska E; Bartkowiak A
    Mech Ageing Dev; 1984 Jan; 24(1):1-7. PubMed ID: 6694439
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Different incorporation rates of arachidonic acid into alkenylacyl-, alkylacyl- and diacylphosphatidylethanolamine of rat erythrocytes.
    Kaya K; Miura T; Kubota K
    Biochim Biophys Acta; 1984 Dec; 796(3):304-11. PubMed ID: 6439250
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Transfer of bovine J-blood-group determinant onto erythrocytes: isolation and identification of a blocker.
    Stephan H; Thiele TW
    Eur J Biochem; 1978 Feb; 83(2):547-52. PubMed ID: 631135
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Interaction of membrane-bound and solubilized acetylcholinesterase from human and bovine erythrocytes with organophosphorus inhibitors].
    Kugusheva LI; Rozengart VI
    Ukr Biokhim Zh (1978); 1986; 58(3):13-8. PubMed ID: 3727030
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Polyphosphoinositide metabolism in aging human erythrocytes.
    Palmer FB
    Can J Biochem Cell Biol; 1985 Sep; 63(9):927-31. PubMed ID: 3000548
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Inhibition of the phosphatidylinositol-specific phospholipase C from Bacillus cereus by a monoclonal antibody binding to a region with sequence similarity to eukaryotic phospholipases.
    Kuppe A; Hedberg KK; Volwerk JJ; Griffith OH
    Biochim Biophys Acta; 1990 Oct; 1047(1):41-8. PubMed ID: 1701099
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Glycolipid-anchored acetylcholinesterases from rabbit lymphocytes and erythrocytes differ in their sensitivity to phosphatidylinositol-specific phospholipase C.
    Richier P; Arpagaus M; Toutant JP
    Biochim Biophys Acta; 1992 Nov; 1112(1):83-8. PubMed ID: 1329966
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A monomeric form of human erythrocyte membrane acetylcholinesterase.
    Ott P; Ariano BH; Binggeli Y; Brodbeck U
    Biochim Biophys Acta; 1983 Apr; 729(2):193-9. PubMed ID: 6830786
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Properties of avian, bovine and porcine erythrocyte membranes.
    Gillis GH; Anastassiadis PA
    Comp Biochem Physiol B; 1985; 81(1):131-5. PubMed ID: 2990805
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Lipid-protein interactions in human erythrocyte-membrane acetylcholinesterase. Modulation of enzyme activity by lipids.
    Frenkel EJ; Roelofsen B; Brodbeck U; van Deenen LL; Ott P
    Eur J Biochem; 1980 Aug; 109(2):377-82. PubMed ID: 7408889
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Erythrocyte membrane alterations in lecithin:cholesterol acyltransferase deficiency.
    Godin DV; Gray GR; Frohlich J
    Scand J Clin Lab Invest Suppl; 1978; 150():162-7. PubMed ID: 218274
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Functional characteristics of phosphatidylinositol-specific phospholipases C from Bacillus cereus and Bacillus thuringiensis.
    Volwerk JJ; Koke JA; Wetherwax PB; Griffith OH
    FEMS Microbiol Lett; 1989 Oct; 52(3):237-41. PubMed ID: 2558947
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Isolation and characterization of poly(glycosyl)ceramides (megaloglycolipids) with A, H and I blood-group activities.
    Kościelak J; Miller-Podraza H; Krauze R; Piasek A
    Eur J Biochem; 1976 Dec; 71(1):9-18. PubMed ID: 827447
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Biochemistry and function of glycosyl phosphatidylinositols anchoring membrane proteins.
    Chap H
    Nouv Rev Fr Hematol (1978); 1991; 33(2):125-8. PubMed ID: 1766839
    [No Abstract]   [Full Text] [Related]  

  • 75. Changes of membrane phospholipid composition of human erythrocytes in hyperlipidemias. II. Increases in distinct molecular species of phosphatidylethanolamine and phosphatidylcholine containing arachidonic acid.
    Engelmann B; Schönthier UM; Richter WO; Duhm J
    Biochim Biophys Acta; 1992 Nov; 1165(1):38-44. PubMed ID: 1420346
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Metabolism of phosphoinositides in the rat erythrocyte membrane. A reappraisal of the effect of magnesium on the 32P incorporation into polyphosphoinositides.
    Marche P; Koutouzov S; Meyer P
    Biochim Biophys Acta; 1982 Mar; 710(3):332-40. PubMed ID: 6280772
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comparison of changes in erythrocyte and platelet phospholipid and fatty acid composition and protein oxidation in chronic obstructive pulmonary disease and asthma.
    De Castro J; Hernández-Hernández A; Rodríguez MC; Sardina JL; Llanillo M; Sánchez-Yagüe J
    Platelets; 2007 Feb; 18(1):43-51. PubMed ID: 17365853
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Factors affecting the ability of glycosylphosphatidylinositol-specific phospholipase D to degrade the membrane anchors of cell surface proteins.
    Low MG; Huang KS
    Biochem J; 1991 Oct; 279 ( Pt 2)(Pt 2):483-93. PubMed ID: 1835378
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Characterization and analysis of the subclasses and molecular species of choline phosphoglycerides from porcine heart by successive chemical hydrolyses and reverse phase high-performance liquid chromatography.
    Shaikh NA
    Mol Cell Biochem; 1990 Jul; 96(1):43-55. PubMed ID: 2233704
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Non-lytic release of acetylcholinesterase from erythrocytes by a phosphatidylinositol-specific phospholipase C.
    Low MG; Finean JB
    FEBS Lett; 1977 Oct; 82(1):143-6. PubMed ID: 913568
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.