These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 1397142)

  • 1. Cortex, striatum and cerebellum: control of serial order in a grooming sequence.
    Berridge KC; Whishaw IQ
    Exp Brain Res; 1992; 90(2):275-90. PubMed ID: 1397142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of action sequences by a neostriatal site: a lesion mapping study of grooming syntax.
    Cromwell HC; Berridge KC
    J Neurosci; 1996 May; 16(10):3444-58. PubMed ID: 8627378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progressive degradation of serial grooming chains by descending decerebration.
    Berridge KC
    Behav Brain Res; 1989 Jul; 33(3):241-53. PubMed ID: 2757783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurological dysfunction expressed in the grooming behavior of developing weaver mutant mice.
    Coscia EM; Fentress JC
    Behav Genet; 1993 Nov; 23(6):533-41. PubMed ID: 8129695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delineating the cortico-striatal-cerebellar network in implicit motor sequence learning.
    Tzvi E; Münte TF; Krämer UM
    Neuroimage; 2014 Jul; 94():222-230. PubMed ID: 24632466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coding of serial order by neostriatal neurons: a "natural action" approach to movement sequence.
    Aldridge JW; Berridge KC
    J Neurosci; 1998 Apr; 18(7):2777-87. PubMed ID: 9502834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Striatal-cerebellar networks mediate consolidation in a motor sequence learning task: An fMRI study using dynamic causal modelling.
    Tzvi E; Stoldt A; Witt K; Krämer UM
    Neuroimage; 2015 Nov; 122():52-64. PubMed ID: 26244275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role for electrotonic coupling in the striatum in the expression of dopamine receptor-mediated stereotypies.
    Moore H; Grace AA
    Neuropsychopharmacology; 2002 Dec; 27(6):980-92. PubMed ID: 12464455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural dynamics in cortex-striatum co-cultures--I. anatomy and electrophysiology of neuronal cell types.
    Plenz D; Aertsen A
    Neuroscience; 1996 Feb; 70(4):861-91. PubMed ID: 8848172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super-stereotypy I: enhancement of a complex movement sequence by systemic dopamine D1 agonists.
    Berridge KC; Aldridge JW
    Synapse; 2000 Sep; 37(3):194-204. PubMed ID: 10881041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fronto-striatal connections in the human brain: a probabilistic diffusion tractography study.
    Leh SE; Ptito A; Chakravarty MM; Strafella AP
    Neurosci Lett; 2007 May; 419(2):113-8. PubMed ID: 17485168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeated stimulation of D1 dopamine receptors causes time-dependent alterations in the sensitivity of both D1 and D2 dopamine receptors within the rat striatum.
    Hu XT; Brooderson RJ; White FJ
    Neuroscience; 1992 Sep; 50(1):137-47. PubMed ID: 1357592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical and striatal circuits together encode transitions in natural behavior.
    Sjöbom J; Tamtè M; Halje P; Brys I; Petersson P
    Sci Adv; 2020 Oct; 6(41):. PubMed ID: 33036974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning.
    Penhune VB; Steele CJ
    Behav Brain Res; 2012 Jan; 226(2):579-91. PubMed ID: 22004979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberrant self-grooming as early marker of motor dysfunction in a rat model of Huntington's disease.
    Tartaglione AM; Armida M; Potenza RL; Pezzola A; Popoli P; Calamandrei G
    Behav Brain Res; 2016 Oct; 313():53-57. PubMed ID: 27374158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of prelimbic and sensorimotor cortices on striatal neurons in the rat: electrophysiological evidence for converging inputs and the effects of 6-OHDA-induced degeneration of the substantia nigra.
    Florio T; Di Loreto S; Cerrito F; Scarnati E
    Brain Res; 1993 Aug; 619(1-2):180-8. PubMed ID: 8374776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurotransmitter receptor localizations: brain lesion induced alterations in benzodiazepine, GABA, beta-adrenergic and histamine H1-receptor binding.
    Chang RS; Tran VT; Snyder SH
    Brain Res; 1980 May; 190(1):95-110. PubMed ID: 6103733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivation or transformation? Motor memory consolidation associated with cerebral activation time-locked to sleep spindles.
    Fogel S; Albouy G; King BR; Lungu O; Vien C; Bore A; Pinsard B; Benali H; Carrier J; Doyon J
    PLoS One; 2017; 12(4):e0174755. PubMed ID: 28422976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of motor and premotor cortex ablation on concentrations of amino acids, monoamines, and acetylcholine and on the ultrastructure in rat striatum. A confirmation of glutamate as the specific cortico-striatal transmitter.
    Hassler R; Haug P; Nitsch C; Kim JS; Paik K
    J Neurochem; 1982 Apr; 38(4):1087-98. PubMed ID: 6121000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basal ganglia and processing of cortical information: functional interactions between trans-striatal and trans-subthalamic circuits in the substantia nigra pars reticulata.
    Kolomiets BP; Deniau JM; Glowinski J; Thierry AM
    Neuroscience; 2003; 117(4):931-8. PubMed ID: 12654344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.