These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 1397151)
1. Respiratory network remains functional in a mature guinea pig brainstem isolated in vitro. Morin-Surun MP; Boudinot E; Sarraseca H; Fortin G; Denavit-Saubié M Exp Brain Res; 1992; 90(2):375-83. PubMed ID: 1397151 [TBL] [Abstract][Full Text] [Related]
2. Localization of chemosensitive structures in the isolated brainstem of adult guinea-pig. Morin-Surun MP; Boudinot E; Schäfer T; Denavit-Saubié M J Physiol; 1995 May; 485 ( Pt 1)(Pt 1):203-12. PubMed ID: 7658374 [TBL] [Abstract][Full Text] [Related]
3. Oxygen supply and respiratory-like activity in the isolated perfused brainstem of the adult guinea pig. Schäfer T; Morin-Surun MP; Denavit-Saubié M Brain Res; 1993 Aug; 618(2):246-50. PubMed ID: 8374755 [TBL] [Abstract][Full Text] [Related]
4. The ventral medullary respiratory network of the mature mouse studied in a working heart-brainstem preparation. Paton JF J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):819-31. PubMed ID: 8799902 [TBL] [Abstract][Full Text] [Related]
5. Involvement of NMDA receptors in the respiratory phase transition is different in the adult guinea pig in vivo and in the isolated brain stem preparation. Morin-Surun MP; Boudinot E; Kato F; Foutz AS; Denavit-Saubié M J Neurophysiol; 1995 Aug; 74(2):770-8. PubMed ID: 7472381 [TBL] [Abstract][Full Text] [Related]
6. Brain stem chemosensitivity: its implication in central respiratory regulation. Morin-Surun MP; Boudinot E; Schäfer T; Denavit-Saubié M Biol Neonate; 1994; 65(3-4):166-70. PubMed ID: 8038278 [TBL] [Abstract][Full Text] [Related]
7. Rhythmic discharges in the perfused isolated brainstem preparation of adult guinea pig. Morin-Surun MP; Denavit-Saubié M Neurosci Lett; 1989 Jun; 101(1):57-61. PubMed ID: 2771155 [TBL] [Abstract][Full Text] [Related]
8. Rhythmic bursting of pre- and post-inspiratory neurones during central apnoea in mature mice. Paton JF J Physiol; 1997 Aug; 502 ( Pt 3)(Pt 3):623-39. PubMed ID: 9279813 [TBL] [Abstract][Full Text] [Related]
9. The hypoxic response of neurones within the in vitro mammalian respiratory network. Ramirez JM; Quellmalz UJ; Wilken B; Richter DW J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):571-82. PubMed ID: 9518714 [TBL] [Abstract][Full Text] [Related]
10. Role of fast inhibitory synaptic mechanisms in respiratory rhythm generation in the maturing mouse. Paton JF; Richter DW J Physiol; 1995 Apr; 484 ( Pt 2)(Pt 2):505-21. PubMed ID: 7602541 [TBL] [Abstract][Full Text] [Related]
11. An arterially perfused brainstem preparation of guinea pig to study central mechanisms of airway defense. Dutschmann M; Dhingra R; McAllen R; Mazzone SB; Farmer DGS J Neurosci Methods; 2019 Apr; 317():49-60. PubMed ID: 30742849 [TBL] [Abstract][Full Text] [Related]
12. Coherent inspiratory oscillation of cranial nerve discharges in perfused neonatal cat brainstem in vitro. Kato F; Morin-Surun MP; Denavit-Saubié M J Physiol; 1996 Dec; 497 ( Pt 2)(Pt 2):539-49. PubMed ID: 8961194 [TBL] [Abstract][Full Text] [Related]
13. Differential effects of serotonin on respiratory activity of hypoglossal and cervical motoneurons: an in vitro study on the newborn rat. Monteau R; Morin D; Hennequin S; Hilaire G Neurosci Lett; 1990 Mar; 111(1-2):127-32. PubMed ID: 2336177 [TBL] [Abstract][Full Text] [Related]
14. Anticonvulsant A(1) receptor-mediated adenosine action on neuronal networks in the brainstem-spinal cord of newborn rats. Brockhaus J; Ballanyi K Neuroscience; 2000; 96(2):359-71. PubMed ID: 10683576 [TBL] [Abstract][Full Text] [Related]
15. Thyrotropin-releasing hormone (TRH) depolarizes a subset of inspiratory neurons in the newborn mouse brain stem in vitro. Rekling JC; Champagnat J; Denavit-Saubié M J Neurophysiol; 1996 Feb; 75(2):811-9. PubMed ID: 8714654 [TBL] [Abstract][Full Text] [Related]
16. Influence of extracellular [K+]o on inspiratory network complexity of phrenic and hypoglossal nerve discharge in arterially-perfused adult rat. Shen TY; Ono K; Solomon IC Adv Exp Med Biol; 2010; 669():181-4. PubMed ID: 20217345 [TBL] [Abstract][Full Text] [Related]
17. Optical analysis of circuitry for respiratory rhythm in isolated brainstem of foetal mice. Muller KJ; Tsechpenakis G; Homma R; Nicholls JG; Cohen LB; Eugenin J Philos Trans R Soc Lond B Biol Sci; 2009 Sep; 364(1529):2485-91. PubMed ID: 19651650 [TBL] [Abstract][Full Text] [Related]
18. Postnatal changes in the mammalian respiratory network as revealed by the transverse brainstem slice of mice. Ramirez JM; Quellmalz UJ; Richter DW J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):799-812. PubMed ID: 8815212 [TBL] [Abstract][Full Text] [Related]
19. Neural network implementation of a three-phase model of respiratory rhythm generation. Botros SM; Bruce EN Biol Cybern; 1990; 63(2):143-53. PubMed ID: 2375940 [TBL] [Abstract][Full Text] [Related]
20. Functional Interactions between Mammalian Respiratory Rhythmogenic and Premotor Circuitry. Song H; Hayes JA; Vann NC; Wang X; LaMar MD; Del Negro CA J Neurosci; 2016 Jul; 36(27):7223-33. PubMed ID: 27383596 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]