BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 1397304)

  • 21. Ascorbic acid and diabetes mellitus.
    Hunt JV
    Subcell Biochem; 1996; 25():369-405. PubMed ID: 8821983
    [No Abstract]   [Full Text] [Related]  

  • 22. Role of lipoprotein lipase and apolipoprotein E secretion by macrophages in modulating lipoprotein uptake. Possible role in acceleration of atherosclerosis in diabetes.
    Kraemer FB
    Diabetes; 1992 Oct; 41 Suppl 2():77-80. PubMed ID: 1526341
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular damage in mouse peritoneal macrophages exposed to cholesteryl linoleate.
    Reid VC; Brabbs CE; Mitchinson MJ
    Atherosclerosis; 1992 Feb; 92(2-3):251-60. PubMed ID: 1632853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid.
    Bagnati M; Perugini C; Cau C; Bordone R; Albano E; Bellomo G
    Biochem J; 1999 May; 340 ( Pt 1)(Pt 1):143-52. PubMed ID: 10229669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of lipoprotein-copper complex in copper catalyzed-peroxidation of low-density lipoprotein.
    Kuzuya M; Yamada K; Hayashi T; Funaki C; Naito M; Asai K; Kuzuya F
    Biochim Biophys Acta; 1992 Feb; 1123(3):334-41. PubMed ID: 1536873
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative Effects of Metal-Catalyzed Oxidizing Systems on Carbonylation and Integrity of Therapeutic Proteins.
    Kryndushkin D; Rao VA
    Pharm Res; 2016 Feb; 33(2):526-39. PubMed ID: 26499343
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ceroid accumulation by murine peritoneal macrophages exposed to artificial lipid-containing particles: the role of the hydrophilic component.
    Ardeshna KM; Ball RY; Carpenter KL; Enright JH; Mitchinson MJ
    Int J Exp Pathol; 1990 Dec; 71(6):799-808. PubMed ID: 2278824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of ascorbic acid on hydroxyl radical generation by chemical, enzymatic and cellular systems. Importance for antioxidant prevention of pulmonary emphysema.
    Nowak D; Piasecka G; Antczak A; Pietras T
    Biomed Biochim Acta; 1991; 50(3):265-72. PubMed ID: 1659390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [The kinetics of ascorbic acid oxidation catalyzed by Cu(II)/H2DCA in the presence of DNA].
    Li PH; Chen QH; Pang YH
    Yao Xue Xue Bao; 1992; 27(2):139-43. PubMed ID: 1414370
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transition metals bind to glycated proteins forming redox active "glycochelates": implications for the pathogenesis of certain diabetic complications.
    Qian M; Liu M; Eaton JW
    Biochem Biophys Res Commun; 1998 Sep; 250(2):385-9. PubMed ID: 9753639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactive effects of polyphenols, tocopherol and ascorbic acid on the Cu2+-mediated oxidative modification of human low density lipoproteins.
    Yeomans VC; Linseisen J; Wolfram G
    Eur J Nutr; 2005 Oct; 44(7):422-8. PubMed ID: 15827683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pleiotropic effects of statins in atherosclerosis and diabetes.
    Bellosta S; Ferri N; Arnaboldi L; Bernini F; Paoletti R; Corsini A
    Diabetes Care; 2000 Apr; 23 Suppl 2():B72-8. PubMed ID: 10860194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Stimulation of cholesterol ester synthesis in macrophages by lipoproteins from normal and atherosclerotic human aorta intima].
    Men'shikov GB; Ivanov VO; Repin VS
    Biokhimiia; 1990 May; 55(5):917-26. PubMed ID: 2393679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The production of ceroid by mouse peritoneal macrophages in vitro.
    Ball RY; Brodley H; Brooks PN; Mitchinson MJ
    Br J Exp Pathol; 1984 Dec; 65(6):719-24. PubMed ID: 6208927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prevention of cholesteryl ester accumulation in P388D1 macrophage-like cells by increased cellular vitamin E depends on species of extracellular cholesterol. Conventional heterologous non-human cell cultures are poor models of human atherosclerotic foam cell formation.
    Asmis R; Llorente VC; Gey KF
    Eur J Biochem; 1995 Oct; 233(1):171-8. PubMed ID: 7588742
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Macrophage foam cell formation during early atherogenesis is determined by the balance between pro-oxidants and anti-oxidants in arterial cells and blood lipoproteins.
    Aviram M
    Antioxid Redox Signal; 1999; 1(4):585-94. PubMed ID: 11233155
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellular vitamin C accumulation in the presence of copper.
    Kuo SM; Tan D; Boyer JC
    Biol Trace Elem Res; 2004 Aug; 100(2):125-36. PubMed ID: 15326362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Macrophages and ceroid in human atherosclerosis.
    Mitchinson MJ; Ball RY; Carpenter KL; Enright JH
    Eur Heart J; 1990 Aug; 11 Suppl E():116-21. PubMed ID: 2226519
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ascorbic acid and copper in linoleate oxidation--Dunkley revisited.
    Kritharides L
    Redox Rep; 1999; 4(6):259-62. PubMed ID: 10772064
    [No Abstract]   [Full Text] [Related]  

  • 40. Macrophages require both iron and copper to oxidize low-density lipoprotein in Hanks' balanced salt solution.
    Kritharides L; Jessup W; Dean RT
    Arch Biochem Biophys; 1995 Oct; 323(1):127-36. PubMed ID: 7487058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.