These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 13973344)

  • 1. [Facts concerning the possibility of using phenol as a carbon source for certain retinolytic bacteria].
    RAYNAUD M; DASTE P
    C R Seances Soc Biol Fil; 1962; 156():1489-93. PubMed ID: 13973344
    [No Abstract]   [Full Text] [Related]  

  • 2. [Further observations concerning the carbonated nutrition of retinolytic bacteria].
    Raynaud M; Biellmann JF; Daste P
    C R Seances Soc Biol Fil; 1966; 160(2):371-5. PubMed ID: 4223955
    [No Abstract]   [Full Text] [Related]  

  • 3. [Retinolytic bacteria].
    Raynaud M; Daste P; Grossin F; Biellmann JF; Wennig R
    Ann Inst Pasteur (Paris); 1968 Oct; 115(4):731-44. PubMed ID: 5697219
    [No Abstract]   [Full Text] [Related]  

  • 4. THE ASSIMILATION OF 1-C COMPOUNDS.
    QUAYLE JR
    J Gen Microbiol; 1963 Aug; 32():163-6. PubMed ID: 14053262
    [No Abstract]   [Full Text] [Related]  

  • 5. The growth of phenol-utilizing bacteria on aromatic carbon sources.
    KRAMER N; DOETSCH RN
    Arch Biochem; 1950 May; 26(3):401-5. PubMed ID: 15419755
    [No Abstract]   [Full Text] [Related]  

  • 6. Microbial degradation of phenol in denitrifying conditions.
    Błaszczyk M; Przytocka-Jusiak M; Suszek A; Mielcarek A
    Acta Microbiol Pol; 1998; 47(1):65-75. PubMed ID: 9735058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of phenol-catabolizing bacteria from a coking plant.
    El-Sayed WS; Ibrahim MK; Abu-Shady M; El-Beih F; Ohmura N; Saiki H; Ando A
    Biosci Biotechnol Biochem; 2003 Sep; 67(9):2026-9. PubMed ID: 14519997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and identification of bacteria from activated sludge purifying petroleum wastewaters.
    Bieszkiewicz E; Boszczyk-Maleszak H; Kaczorowska B; Mycielski R
    Acta Microbiol Pol; 1995; 44(2):171-9. PubMed ID: 8906933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative abundance and the relationships between aniline, phenol and catechol degraders in fresh water.
    Nasu M; Goonewardena N; Kogame R; Yamaguchi N; Tani K; Kondo M
    Biomed Environ Sci; 1993 Mar; 6(1):95-101. PubMed ID: 8476539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of bioavailable phenols from natural samples by recombinant luminescent bacterial sensors.
    Leedjärv A; Ivask A; Virta M; Kahru A
    Chemosphere; 2006 Sep; 64(11):1910-9. PubMed ID: 16581105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1.
    Li Y; Li J; Wang C; Wang P
    Bioresour Technol; 2010 Sep; 101(17):6740-4. PubMed ID: 20385485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FAME profiles in Pseudomonas vesicularis during catechol and phenol degradation in the presence of glucose as an additional carbon source.
    Mrozik A; Piotrowska-Seget Z; Labuzek S
    Pol J Microbiol; 2007; 56(3):157-64. PubMed ID: 18062648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenol degrading ability of Rhodococcus pyrinidivorans and Pseudomonas aeruginosa isolated from activated sludge plants in South Africa.
    Kumari S; Chetty D; Ramdhani N; Bux F
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(8):947-53. PubMed ID: 23485246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservation of regulatory and structural genes for a multi-component phenol hydroxylase within phenol-catabolizing bacteria that utilize a meta-cleavage pathway.
    Nordlund I; Powlowski J; Hagström A; Shingler V
    J Gen Microbiol; 1993 Nov; 139(11):2695-703. PubMed ID: 8277253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of biodegradation of phenol and homologous compounds by Pseudomonas vesicularis and Staphylococcus sciuri strains.
    Mrozik A; Labuzek S
    Acta Microbiol Pol; 2002; 51(4):367-78. PubMed ID: 12708825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of microcystins by adsorbed bacteria on a granular active carbon (GAC) filter during the water treatment process.
    Lee YJ; Jung JM; Jang MH; Ha K; Joo GJ
    J Environ Biol; 2006 May; 27(2 Suppl):317-22. PubMed ID: 17436517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some characteristics of a phenol-oxidizing Pseudomonas.
    HAMDY MK; SHERRER EL; RANDLES CI; WEISER HH; SHEETS WD
    Appl Microbiol; 1956 Mar; 4(2):71-5. PubMed ID: 13303136
    [No Abstract]   [Full Text] [Related]  

  • 18. [Culture and biodegradation performance for phenol-degrading bacterium in high phenol concentration].
    Lü RH; Fu Q
    Huan Jing Ke Xue; 2005 Sep; 26(5):147-51. PubMed ID: 16366488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of granular activated carbon anaerobic fluidized-bed process for treating phenols wastewater.
    Lao SG
    J Environ Sci (China); 2002 Jan; 14(1):132-5. PubMed ID: 11887310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical calculation of phenol value of an activated carbon.
    HOOT RA
    Water Sew Works; 1947 Nov; 94(11):402-4. PubMed ID: 20273470
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.