BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 1397498)

  • 1. Kinetic evidence for the existence of an unstable intermediate in the trinitrophenylation-induced rhodanese inactivation reaction.
    Rakitzis ET; Malliopoulou TB
    Int J Biochem; 1992 Jul; 24(7):1051-5. PubMed ID: 1397498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diethylbarbiturate potentiation of 2,4,6-trinitrobenzenesulphonate-induced rhodanese inactivation.
    Malliopoulou TB; Rakitzis ET; Malliopoulou VA
    J Enzyme Inhib; 1990; 4(1):27-34. PubMed ID: 2094768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic evidence for the existence of an unstable intermediate in the trinitrophenylation-induced rhodanese inactivation reaction.
    Rakitzis ET; Malliopoulou T
    Biochem Soc Trans; 1992 Feb; 20(1):31S. PubMed ID: 1633961
    [No Abstract]   [Full Text] [Related]  

  • 4. Inactivation of rhodanese from human gastric mucosa and stomach adenocarcinoma by 2,4, 6-trinitrobenzenesulphonate and by 4,4'-diisothiocyanatostilbene-2,2'-disulphonate.
    Malliopoulou VA; Rakitzis ET; Malliopoulou TB
    Anticancer Res; 1989; 9(4):1133-6. PubMed ID: 2817794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification and inactivation of rhodanese by 2,4,6-trinitrobenzenesulphonic acid.
    Malliopoulou TB; Rakitzis ET
    J Enzyme Inhib; 1988; 2(2):99-115. PubMed ID: 3236071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of protein-modification reactions. Stoichiometry of modification-produced enzyme inactivation: modification of rhodanese by 2,4,6-trinitrobenzenesulphonic acid.
    Rakitzis ET; Malliopoulou TB
    Biochem J; 1985 Aug; 230(1):89-93. PubMed ID: 4052047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General acid-base catalysis of 2,4,6-trinitrobenzene-sulphonate-induced rhodanese inactivation.
    Malliopoulou TB; Rakitzis ET
    Biochem Soc Trans; 1992 Feb; 20(1):34S. PubMed ID: 1633963
    [No Abstract]   [Full Text] [Related]  

  • 8. Inactivation of rhodanese by pyridoxal 5'-phosphate.
    Cannella C; Pecci L; Costa M; Pensa B; Cavallini D
    Eur J Biochem; 1975 Aug; 56(1):283-7. PubMed ID: 1236801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of rhodanese with intermediates of oxygen reduction.
    Cannella C; Berni R
    FEBS Lett; 1983 Oct; 162(1):180-4. PubMed ID: 6311631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical modification of bovine liver rhodanese with tetrathionate: differential effects on the sulfur-free and sulfur-containing catalytic intermediates.
    Prasad AR; Horowitz PM
    Biochim Biophys Acta; 1987 Jan; 911(1):102-8. PubMed ID: 3466649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The specificity of active-site alkylation by iodoacetic acid in the enzyme thiosulfate sulfurtransferase.
    Horowitz P; Criscimagna NL
    Biochim Biophys Acta; 1982 Apr; 702(2):173-7. PubMed ID: 6952939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction of rhodanese with dithiothreitol.
    Pecci L; Pensa B; Costa M; Cignini PL; Cannella C
    Biochim Biophys Acta; 1976 Aug; 445(1):104-11. PubMed ID: 986188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of dithiothreitol inactivation of the enzyme rhodanese.
    Kim SK; Horowitz PM
    Biochem Biophys Res Commun; 1975 Nov; 67(1):433-9. PubMed ID: 1201034
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies of the N-bromosuccinimide inactivation of the enzyme rhodanese.
    Guido K; Horowitz P
    Biochim Biophys Acta; 1977 Nov; 485(1):95-100. PubMed ID: 911868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing sugars can induce the oxidative inactivation of rhodanese.
    Horowitz PM; Butler M; McClure GD
    J Biol Chem; 1992 Nov; 267(33):23596-600. PubMed ID: 1429701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical modification of rhodanese with sulphite.
    Berni R; Musci G; Pallini R; Cannella C
    Free Radic Res Commun; 1991; 15(4):203-9. PubMed ID: 1816051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of rhodanese intermediates during thermal inactivation and their implications for the mechanism of protein aggregation.
    Bhattacharyya AM; Horowitz PM
    Biochemistry; 2002 Jan; 41(1):422-9. PubMed ID: 11772042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary structure of avian hepatic rhodanese.
    Kohanski RA; Heinrikson RL
    J Protein Chem; 1990 Aug; 9(4):369-77. PubMed ID: 2275748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational changes accompany the oxidative inactivation of rhodanese by a variety of reagents.
    Horowitz PM; Bowman S
    J Biol Chem; 1987 Jun; 262(18):8728-33. PubMed ID: 3474229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermally perturbed rhodanese can be protected from inactivation by self-association.
    Dungan JM; Horowitz PM
    J Protein Chem; 1993 Jun; 12(3):311-21. PubMed ID: 8397789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.