These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 13976536)

  • 1. Evaluation of factors affecting the survival of Escherichia coli in sea water. VI. Cysteine.
    SCARPINO PV; PRAMER D
    Appl Microbiol; 1962 Sep; 10(5):436-40. PubMed ID: 13976536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of factors affecting survival of Escherichia coli in sea water. V. Studies with heat- and filter-sterilized sea water.
    CARLUCCI AF; SCARPINO PV; PRAMER D
    Appl Microbiol; 1961 Sep; 9(5):400-4. PubMed ID: 13690852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A
    Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of cysteinyl peptides to effect portage transport of sulfhydryl-containing compounds in Escherichia coli.
    Boehm JC; Kingsbury WD; Perry D; Gilvarg C
    J Biol Chem; 1983 Dec; 258(24):14850-5. PubMed ID: 6361018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring thiol-disulfide exchange equilibrium constants for single cysteine-containing proteins.
    Wynn R; Richards FM
    Methods Enzymol; 1995; 251():375-82. PubMed ID: 7651219
    [No Abstract]   [Full Text] [Related]  

  • 6. EFFECT OF CHELATING AGENTS ON THE GROWTH OF ESCHERICHIA COLI IN SEAWATER.
    JONES GE
    J Bacteriol; 1964 Mar; 87(3):483-99. PubMed ID: 14127563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Oxidative side reactions during dansylation of SH-compounds].
    Schulze E; Neuhoff V
    Hoppe Seylers Z Physiol Chem; 1976 Feb; 357(2):225-31. PubMed ID: 1254249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation and properties of mixed disulfides between thioredoxin reductase from Escherichia coli and thioredoxin: evidence that cysteine-138 functions to initiate dithiol-disulfide interchange and to accept the reducing equivalent from reduced flavin.
    Veine DM; Mulrooney SB; Wang PF; Williams CH
    Protein Sci; 1998 Jun; 7(6):1441-50. PubMed ID: 9655349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escherichia coli contains a protein that is homologous in function and N-terminal sequence to the protein encoded by the nifS gene of Azotobacter vinelandii and that can participate in the synthesis of the Fe-S cluster of dihydroxy-acid dehydratase.
    Flint DH
    J Biol Chem; 1996 Jul; 271(27):16068-74. PubMed ID: 8663056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The isolation and primary structure of a peptide containing the oxidation-reduction active cystine of Escherichia coli thioredoxin reductase.
    Ronchi S; Williams CH
    J Biol Chem; 1972 Apr; 247(7):2083-6. PubMed ID: 4401439
    [No Abstract]   [Full Text] [Related]  

  • 11. Reaction mechanism of ribonucleoside diphosphate reductase from Escherichia coli. Oxidation-reduction-active disulfides in the B1 subunit.
    Thelander L
    J Biol Chem; 1974 Aug; 249(15):4858-62. PubMed ID: 4152559
    [No Abstract]   [Full Text] [Related]  

  • 12. Molecular organization in bacterial cell membranes. Sulfhydryl groups and disulfide bridges in Streptomyces albus and Escherichia coli K 12 cytoplasmic membranes.
    Azocar O; Muñoz E
    Eur J Biochem; 1976 Sep; 68(1):245-54. PubMed ID: 786637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Studies on the oxidation-reduction potentials of 2-mercaptopropionylglycine and penicillamine using thiol-disulfide exchange reactions with cysteine and glutathione (author's transl)].
    Okamura S; Toshioka N; Asakura S; Oya M; Nagamori S
    Yakugaku Zasshi; 1974 Jun; 94(6):655-9. PubMed ID: 4472644
    [No Abstract]   [Full Text] [Related]  

  • 14. Seryl transfer ribonucleic acid synthetase from Escherichia coli. Substrate binding and chemical modification of cysteinyl residues.
    Waterson RM; Clarke SJ; Kalousek F; Konigsberg WH
    J Biol Chem; 1973 Jun; 248(12):4181-8. PubMed ID: 4576131
    [No Abstract]   [Full Text] [Related]  

  • 15. DsbB catalyzes disulfide bond formation de novo.
    Regeimbal J; Bardwell JC
    J Biol Chem; 2002 Sep; 277(36):32706-13. PubMed ID: 12072444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination and metabolism of dithiol chelating agents. VI. Isolation and identification of the mixed disulfides of meso-2,3-dimercaptosuccinic acid with L-cysteine in human urine.
    Maiorino RM; Bruce DC; Aposhian HV
    Toxicol Appl Pharmacol; 1989 Feb; 97(2):338-49. PubMed ID: 2538007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of the secretory response to Escherichia coli heat-stable enterotoxin by thiol and disulfide compounds.
    Greenberg RN; Dunn JA; Guerrant RL
    Infect Immun; 1983 Jul; 41(1):174-80. PubMed ID: 6134677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water electrolyte promoted oxidation of functional thiol groups.
    Lauwers K; Breynaert E; Rombouts I; Delcour JA; Kirschhock CE
    Food Chem; 2016 Apr; 197 Pt B():1235-9. PubMed ID: 26675862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arrangement of disulfide bridges and positions of sulfhydryl groups in tetanus toxin.
    Krieglstein K; Henschen A; Weller U; Habermann E
    Eur J Biochem; 1990 Feb; 188(1):39-45. PubMed ID: 2108021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational state of ovalbumin at acidic pH as evaluated by a novel approach utilizing intrachain sulfhydryl-mixed disulfide exchange reactions.
    Tatsumi E; Yoshimatsu D; Hirose M
    Biochemistry; 1998 Sep; 37(35):12351-9. PubMed ID: 9724549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.