These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 1398062)

  • 41. Mutations in the right boundary of Saccharomyces cerevisiae centromere 6 lead to nonfunctional or partially functional centromeres.
    Hegemann JH; Pridmore RD; Schneider R; Philippsen P
    Mol Gen Genet; 1986 Nov; 205(2):305-11. PubMed ID: 3027507
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Saccharomyces cerevisiae kinetochore contains a cyclin-CDK complexing homologue, as identified by in vitro reconstitution.
    Stemmann O; Lechner J
    EMBO J; 1996 Jul; 15(14):3611-20. PubMed ID: 8670864
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Specific cis-acting sequence for PHO8 expression interacts with PHO4 protein, a positive regulatory factor, in Saccharomyces cerevisiae.
    Hayashi N; Oshima Y
    Mol Cell Biol; 1991 Feb; 11(2):785-94. PubMed ID: 1990283
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interactions of the yeast centromere and promoter factor, Cpf1p, with the cytochrome c1 upstream region and functional implications on regulated gene expression.
    Oechsner U; Bandlow W
    Nucleic Acids Res; 1996 Jun; 24(12):2395-403. PubMed ID: 8710512
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gene identification using the yeast two-hybrid system.
    Bai C; Elledge SJ
    Methods Enzymol; 1996; 273():331-47. PubMed ID: 8791622
    [No Abstract]   [Full Text] [Related]  

  • 46. Two-hybrid interaction of a human UBC9 homolog with centromere proteins of Saccharomyces cerevisiae.
    Jiang W; Koltin Y
    Mol Gen Genet; 1996 May; 251(2):153-60. PubMed ID: 8668125
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of RTF1, a novel gene important for TATA site selection by TATA box-binding protein in Saccharomyces cerevisiae.
    Stolinski LA; Eisenmann DM; Arndt KM
    Mol Cell Biol; 1997 Aug; 17(8):4490-500. PubMed ID: 9234706
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional domains of the yeast STE12 protein, a pheromone-responsive transcriptional activator.
    Kirkman-Correia C; Stroke IL; Fields S
    Mol Cell Biol; 1993 Jun; 13(6):3765-72. PubMed ID: 8497278
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional analysis of different regions of the positive-acting CYS3 regulatory protein of Neurospora crassa.
    Coulter KR; Marzluf GA
    Curr Genet; 1998 Jun; 33(6):395-405. PubMed ID: 9644202
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evidence that POB1, a Saccharomyces cerevisiae protein that binds to DNA polymerase alpha, acts in DNA metabolism in vivo.
    Miles J; Formosa T
    Mol Cell Biol; 1992 Dec; 12(12):5724-35. PubMed ID: 1448101
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mutations in the TATA-binding protein, affecting transcriptional activation, show synthetic lethality with the TAF145 gene lacking the TAF N-terminal domain in Saccharomyces cerevisiae.
    Kobayashi A; Miyake T; Ohyama Y; Kawaichi M; Kokubo T
    J Biol Chem; 2001 Jan; 276(1):395-405. PubMed ID: 11035037
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cooperative DNA binding of the yeast transcriptional activator GAL4.
    Giniger E; Ptashne M
    Proc Natl Acad Sci U S A; 1988 Jan; 85(2):382-6. PubMed ID: 3124106
    [TBL] [Abstract][Full Text] [Related]  

  • 53. HAP1 positive control mutants specific for one of two binding sites.
    Turcotte B; Guarente L
    Genes Dev; 1992 Oct; 6(10):2001-9. PubMed ID: 1327959
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differential effects of Cdc68 on cell cycle-regulated promoters in Saccharomyces cerevisiae.
    Lycan D; Mikesell G; Bunger M; Breeden L
    Mol Cell Biol; 1994 Nov; 14(11):7455-65. PubMed ID: 7935460
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of GCD14 and GCD15, novel genes required for translational repression of GCN4 mRNA in Saccharomyces cerevisiae.
    Cuesta R; Hinnebusch AG; Tamame M
    Genetics; 1998 Mar; 148(3):1007-20. PubMed ID: 9539420
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural studies on centromeres in the yeast Saccharomyces cerevisiae.
    Ng R; Ness J; Carbon J
    Basic Life Sci; 1986; 40():479-92. PubMed ID: 3032143
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gene dosage affects the expression of the duplicated NHP6 genes of Saccharomyces cerevisiae.
    Kolodrubetz D; Kruppa M; Burgum A
    Gene; 2001 Jul; 272(1-2):93-101. PubMed ID: 11470514
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae.
    Blinder D; Coschigano PW; Magasanik B
    J Bacteriol; 1996 Aug; 178(15):4734-6. PubMed ID: 8755910
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wild type GAL4 binds cooperatively to the GAL1-10 UASG in vitro.
    Kang T; Martins T; Sadowski I
    J Biol Chem; 1993 May; 268(13):9629-35. PubMed ID: 8486650
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Purification of a protein binding to the CDEI subregion of Saccharomyces cerevisiae centromere DNA.
    Jiang WD; Philippsen P
    Mol Cell Biol; 1989 Dec; 9(12):5585-93. PubMed ID: 2685569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.