These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 1398218)

  • 1. Biochemical and toxicological properties of the oxidation products of catecholamines.
    Bindoli A; Rigobello MP; Deeble DJ
    Free Radic Biol Med; 1992 Oct; 13(4):391-405. PubMed ID: 1398218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catecholamine toxicity: a proposal for the molecular pathogenesis of manganese neurotoxicity and Parkinson's disease.
    Graham DG
    Neurotoxicology; 1984; 5(1):83-95. PubMed ID: 6538951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of aminochromes.
    Bindoli A; Rigobello MP; Galzigna L
    Toxicol Lett; 1989 Jul; 48(1):3-20. PubMed ID: 2665188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of catecholamine reactive intermediates and oxidative stress to the pathologic features of heart diseases.
    Costa VM; Carvalho F; Bastos ML; Carvalho RA; Carvalho M; Remião F
    Curr Med Chem; 2011; 18(15):2272-314. PubMed ID: 21517751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicology update: the cardiotoxicity of the oxidative stress metabolites of catecholamines (aminochromes).
    Behonick GS; Novak MJ; Nealley EW; Baskin SI
    J Appl Toxicol; 2001 Dec; 21 Suppl 1():S15-22. PubMed ID: 11920915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of myeloperoxidase in the oxidation of biologically active polyhydroxyphenols (substituted catechols).
    Metodiewa D; Dunford HB
    Eur J Biochem; 1990 Oct; 193(2):445-8. PubMed ID: 2171935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation chemistry of catecholamines and neuronal degeneration: an update.
    Napolitano A; Manini P; d'Ischia M
    Curr Med Chem; 2011; 18(12):1832-45. PubMed ID: 21466469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron chelation with salicylaldehyde isonicotinoyl hydrazone protects against catecholamine autoxidation and cardiotoxicity.
    Hašková P; Kovaříková P; Koubková L; Vávrová A; Macková E; Simůnek T
    Free Radic Biol Med; 2011 Feb; 50(4):537-49. PubMed ID: 21147217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of β-cyclodextrin on intra and intermolecular Michael addition of some catechol derivatives.
    Khalafi L; Rafiee M; Fathi S
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():695-701. PubMed ID: 24096065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of catecholamine oxidation in sudden cardiac death.
    Dhalla NS; Adameova A; Kaur M
    Fundam Clin Pharmacol; 2010 Oct; 24(5):539-46. PubMed ID: 20584205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of 4-methylcatechol: implications for the oxidation of catecholamines.
    Li G; Zhang H; Sader F; Vadhavkar N; Njus D
    Biochemistry; 2007 Jun; 46(23):6978-83. PubMed ID: 17503772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Affinity-dependent cross-linking to neurotoxin sites of the acetylcholine receptor mediated by catechol oxidation.
    Nickoloff BJ; Grimes M; Wohlfeil E; Hudson RA
    Biochemistry; 1985 Feb; 24(4):999-1007. PubMed ID: 3995004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroglobin modification by reactive quinone species.
    Nicolis S; Monzani E; Pezzella A; Ascenzi P; Sbardella D; Casella L
    Chem Res Toxicol; 2013 Dec; 26(12):1821-31. PubMed ID: 24144187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential oxidative pathways of brain catecholamines.
    Tse DC; McCreery RL; Adams RN
    J Med Chem; 1976 Jan; 19(1):37-40. PubMed ID: 1246050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of DNA, proteins and lipids by DOPA, protein-bound DOPA, and related catechol(amine)s.
    Pattison DI; Dean RT; Davies MJ
    Toxicology; 2002 Aug; 177(1):23-37. PubMed ID: 12126793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of various iron chelators used in clinical practice as protecting agents against catecholamine-induced oxidative injury and cardiotoxicity.
    Hašková P; Koubková L; Vávrová A; Macková E; Hrušková K; Kovaříková P; Vávrová K; Simůnek T
    Toxicology; 2011 Nov; 289(2-3):122-31. PubMed ID: 21864640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of catecholamine conjugates with nitrogen-centered bionucleophiles.
    Siopa F; Pereira AS; Ferreira LM; Matilde Marques M; Branco PS
    Bioorg Chem; 2012 Oct; 44():19-24. PubMed ID: 22784829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of superoxide dismutase and catalase to protect catecholamines from oxidation in tissue culture studies.
    Mahan LC; Insel PA
    Anal Biochem; 1984 Jan; 136(1):208-16. PubMed ID: 6711809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catecholamine-induced release of nitric oxide from N-nitrosotryptophan derivatives: a non-enzymatic method for catecholamine oxidation.
    Kytzia A; Korth HG; de Groot H; Kirsch M
    Org Biomol Chem; 2006 Jan; 4(2):257-67. PubMed ID: 16391768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative reactions and schizophrenia: a review-discussion.
    Smythies JR
    Schizophr Res; 1997 Apr; 24(3):357-64. PubMed ID: 9134597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.