These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 13983185)

  • 1. Maintenance of the rumen microbial population in continuous culture.
    RUFENER WH; NELSON WO; WOLIN MJ
    Appl Microbiol; 1963 May; 11(3):196-201. PubMed ID: 13983185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rumen fermentation in vitro as influenced by long chain fatty acids.
    Chalupa W; Rickabaugh B; Kronfeld DS; Sklan D
    J Dairy Sci; 1984 Jul; 67(7):1439-44. PubMed ID: 6747049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MODIFICATIONS OF A DEVICE FOR MAINTENANCE OF THE RUMEN MICROBIAL POPULATION IN CONTINUOUS CULTURE.
    SLYTER LL; NELSON WO; WOLIN MJ
    Appl Microbiol; 1964 Jul; 12(4):374-7. PubMed ID: 14201093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH.
    Calsamiglia S; Cardozo PW; Ferret A; Bach A
    J Anim Sci; 2008 Mar; 86(3):702-11. PubMed ID: 18073289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture system.
    Foskolos A; Siurana A; Rodriquez-Prado M; Ferret A; Bravo D; Calsamiglia S
    J Dairy Sci; 2015 Aug; 98(8):5482-91. PubMed ID: 26004834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems.
    Castillejos L; Calsamiglia S; Ferret A
    J Dairy Sci; 2006 Jul; 89(7):2649-58. PubMed ID: 16772584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro evaluation of cashew nut shell liquid as a methane-inhibiting and propionate-enhancing agent for ruminants.
    Watanabe Y; Suzuki R; Koike S; Nagashima K; Mochizuki M; Forster RJ; Kobayashi Y
    J Dairy Sci; 2010 Nov; 93(11):5258-67. PubMed ID: 20965342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of different concentrations of disodium fumarate on methane production and fermentation of concentrate feeds by rumen micro-organisms in vitro.
    Carro MD; Ranilla MJ
    Br J Nutr; 2003 Sep; 90(3):617-23. PubMed ID: 13129468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of feeding corn, hull-less or hulled barley on fermentation by mixed cultures of ruminal microorganisms.
    Fellner V; Burns JC; Marshall DS
    J Dairy Sci; 2008 May; 91(5):1936-41. PubMed ID: 18420625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production and metabolism of volatile fatty acids, glucose and CO2 in steers and the effects of monensin on volatile fatty acid kinetics.
    Armentano LE; Young JW
    J Nutr; 1983 Jun; 113(6):1265-77. PubMed ID: 6406652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular hydrogen produced by elemental magnesium inhibits rumen fermentation and enhances methanogenesis in dairy cows.
    Ma ZY; Zhang XM; Wang M; Wang R; Jiang ZY; Tan ZL; Gao FX; Muhammed A
    J Dairy Sci; 2019 Jun; 102(6):5566-5576. PubMed ID: 30981486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep.
    Martínez-Fernández G; Abecia L; Arco A; Cantalapiedra-Hijar G; Martín-García AI; Molina-Alcaide E; Kindermann M; Duval S; Yáñez-Ruiz DR
    J Dairy Sci; 2014; 97(6):3790-9. PubMed ID: 24731636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats.
    Wang M; Wang R; Zhang X; Ungerfeld EM; Long D; Mao H; Jiao J; Beauchemin KA; Tan Z
    Br J Nutr; 2017 Sep; 118(6):401-410. PubMed ID: 28927478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rates of production of individual volatile fatty acids in the rumen of lactating cows.
    HUNGATE RE; MAH RA; SIMESEN M
    Appl Microbiol; 1961 Nov; 9(6):554-61. PubMed ID: 14450002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of aibellin, a novel peptide antibiotic, on rumen fermentation in vitro.
    Hino T; Takeshi K; Kanda M; Kumazawa S
    J Dairy Sci; 1993 Aug; 76(8):2213-21. PubMed ID: 7691910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rumen liquor pH, osmolality and volatile fatty acid changes in calves fed intensively on barley with hay added.
    Mullen PA
    Br Vet J; 1973; 129(3):267-76. PubMed ID: 4728195
    [No Abstract]   [Full Text] [Related]  

  • 17. Interactions of alfalfa hay and sodium propionate on dairy calf performance and rumen development.
    Beiranvand H; Ghorbani GR; Khorvash M; Nabipour A; Dehghan-Banadaky M; Homayouni A; Kargar S
    J Dairy Sci; 2014; 97(4):2270-80. PubMed ID: 24508441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian mechanistic modeling of thermodynamically controlled volatile fatty acid, hydrogen and methane production in the bovine rumen.
    van Lingen HJ; Fadel JG; Moraes LE; Bannink A; Dijkstra J
    J Theor Biol; 2019 Nov; 480():150-165. PubMed ID: 31401059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pH on population and fermentation in a continuously cultured rumen ecosystem.
    Slyter LL; Bryant MP; Wolin MJ
    Appl Microbiol; 1966 Jul; 14(4):573-8. PubMed ID: 5951330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hops (Humulus lupulus L.) extract on volatile fatty acid production by rumen bacteria.
    Flythe MD; Aiken GE
    J Appl Microbiol; 2010 Oct; 109(4):1169-76. PubMed ID: 20456526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.