BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 1398507)

  • 1. Role of cytochrome P-450 2E1 in ethanol-, carbon tetrachloride- and iron-dependent microsomal lipid peroxidation.
    Castillo T; Koop DR; Kamimura S; Triadafilopoulos G; Tsukamoto H
    Hepatology; 1992 Oct; 16(4):992-6. PubMed ID: 1398507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced glutathione protection against rat liver microsomal injury by carbon tetrachloride. Dependence on O2.
    Burk RF; Patel K; Lane JM
    Biochem J; 1983 Dec; 215(3):441-5. PubMed ID: 6318726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of chronic ethanol consumption on microsomal lipid peroxidation. Role of iron and comparison between controls.
    Krikun G; Cederbaum AI
    FEBS Lett; 1986 Nov; 208(2):292-6. PubMed ID: 3780968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microsomal lipid peroxidation. II. Stimulation by carbon tetrachloride.
    Kornbrust DJ; Mavis RD
    Mol Pharmacol; 1980 May; 17(3):408-14. PubMed ID: 7393216
    [No Abstract]   [Full Text] [Related]  

  • 5. Carbon tetrachloride-induced lipid peroxidation dependent on an ethanol-inducible form of rabbit liver microsomal cytochrome P-450.
    Johansson I; Ingelman-Sundberg M
    FEBS Lett; 1985 Apr; 183(2):265-9. PubMed ID: 3987892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations of the microsomal glucose-6-phosphatase system evoked by ferrous iron- and haloalkane free-radical-mediated lipid peroxidation.
    de Groot H; Noll T; Rymsa B
    Biochim Biophys Acta; 1986 May; 881(3):350-5. PubMed ID: 3008850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid peroxidation as a mechanism of alcoholic liver injury: role of iron mobilization and microsomal induction.
    Shaw S; Jayatilleke E; Lieber CS
    Alcohol; 1988; 5(2):135-40. PubMed ID: 3134909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysis of erythrocytes as a result of microsomal lipid peroxidation induced by CCl4 or FeCl2.
    Schulze RM; Kappus H
    Res Commun Chem Pathol Pharmacol; 1980 Jan; 27(1):129-37. PubMed ID: 7360993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the ability of ferric complexes to catalyze microsomal chemiluminescence, lipid peroxidation, and hydroxyl radical generation.
    Puntarulo S; Cederbaum AI
    Arch Biochem Biophys; 1988 Aug; 264(2):482-91. PubMed ID: 2840858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased NADPH-dependent chemiluminescence by microsomes after chronic ethanol consumption.
    Puntarulo S; Cederbaum AI
    Arch Biochem Biophys; 1988 Nov; 266(2):435-45. PubMed ID: 3190238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytochrome P450 2E1 dependent catalytic activity and lipid peroxidation in rat blood lymphocytes.
    Dey A; Parmar D; Dhawan A; Dash D; Seth PK
    Life Sci; 2002 Oct; 71(21):2509-19. PubMed ID: 12270756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferritin stimulation of lipid peroxidation by microsomes after chronic ethanol treatment: role of cytochrome P4502E1.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1996 Aug; 332(1):121-7. PubMed ID: 8806716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of iron in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced lipid peroxidation by rat liver microsomes.
    Al-Bayati ZA; Stohs SJ
    Toxicol Lett; 1987 Sep; 38(1-2):115-21. PubMed ID: 3114917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rat liver microsomal NADPH-supported oxidase activity and lipid peroxidation dependent on ethanol-inducible cytochrome P-450 (P-450IIE1).
    Ekström G; Ingelman-Sundberg M
    Biochem Pharmacol; 1989 Apr; 38(8):1313-9. PubMed ID: 2495801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of the administration of cobaltic protoporphyrin IX on drug metabolism, carbon tetrachloride activation and lipid peroxidation in rat liver microsomes.
    Cheeseman KH; Albano EF; Tomasi A; Slater TF
    Chem Biol Interact; 1984 Jul; 50(2):143-51. PubMed ID: 6430572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of latent activity of liver microsomal membrane enzymes evoked by lipid peroxidation. Studies of nucleoside diphosphatase, glucose-6-phosphatase, and UDP glucuronyltransferase.
    de Groot H; Noll T; Tölle T
    Biochim Biophys Acta; 1985 Apr; 815(1):91-6. PubMed ID: 2985117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition by coenzyme Q of ethanol- and carbon tetrachloride-stimulated lipid peroxidation in vivo and catalyzed by microsomal and mitochondrial systems.
    Beyer RE
    Free Radic Biol Med; 1988; 5(5-6):297-303. PubMed ID: 3256528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prevention of carbon tetrachloride-induced lipid peroxidation in liver microsomes from dehydroepiandrosterone-pretreated rats.
    Aragno M; Tamagno E; Poli G; Boccuzzi G; Brignardello E; Danni O
    Free Radic Res; 1994; 21(6):427-35. PubMed ID: 7834057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for carbon tetrachloride-induced lipid peroxidation in mouse liver.
    Lee PY; McCay PB; Hornbrook KR
    Biochem Pharmacol; 1982 Feb; 31(3):405-9. PubMed ID: 7073767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship of oxygen and glutathione in protection against carbon tetrachloride-induced hepatic microsomal lipid peroxidation and covalent binding in the rat. Rationale for the use of hyperbaric oxygen to treat carbon tetrachloride ingestion.
    Burk RF; Lane JM; Patel K
    J Clin Invest; 1984 Dec; 74(6):1996-2001. PubMed ID: 6511912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.