BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 13988371)

  • 1. Significance of cryoprofibrin in fibrinogen-fibrin conversion.
    SHAINOFF JR; PAGE IH
    J Exp Med; 1962 Nov; 116(5):687-707. PubMed ID: 13988371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The polymerization and thrombin-binding properties of des-(B beta 1-42)-fibrin.
    Siebenlist KR; DiOrio JP; Budzynski AZ; Mosesson MW
    J Biol Chem; 1990 Oct; 265(30):18650-5. PubMed ID: 2211727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of fibrinogen to fibrin induced by preferential release of fibrinopeptide B.
    Dyr JE; Blombäck B; Hessel B; Kornalík F
    Biochim Biophys Acta; 1989 Jan; 990(1):18-24. PubMed ID: 2914147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of delayed fibrinopeptide-A release on fibrin structure. Studies of an abnormal fibrinogen.
    Carr ME; Qureshi GD
    J Biol Chem; 1987 Nov; 262(32):15568-74. PubMed ID: 3680212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of fibrinopeptides by the slow and fast forms of thrombin.
    Vindigni A; Di Cera E
    Biochemistry; 1996 Apr; 35(14):4417-26. PubMed ID: 8605191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrinogen Matsumoto V: a variant with Aalpha19 Arg-->Gly (AGG-->GGG). Comparison between fibrin polymerization stimulated by thrombin or reptilase and fibrin monomer polymerization.
    Tanaka H; Terasawa F; Ito T; Tokunaga S; Ishida F; Kitano K; Kiyosawa K; Okumura N
    Thromb Haemost; 2001 Jan; 85(1):108-13. PubMed ID: 11204560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence of fibrinogen proteolysis and platelet release after intrauterine infusion of hypertonic saline.
    Nossel HL; Wasser J; Kaplan KL; LaGamma KS; Yudelman I; Canfield RE
    J Clin Invest; 1979 Nov; 64(5):1371-8. PubMed ID: 500818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Citrullinated fibrinogen shows defects in FPA and FPB release and fibrin polymerization catalyzed by thrombin.
    Okumura N; Haneishi A; Terasawa F
    Clin Chim Acta; 2009 Mar; 401(1-2):119-23. PubMed ID: 19109936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clotting of bovine fibrinogen. Calcium binding to fibrin during clotting and its dependence on release of fibrinopeptide B.
    Mihalyi E
    Biochemistry; 1988 Feb; 27(3):967-76. PubMed ID: 3365373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sialic acid in fibrinogen: effects of sialic acid on fibrinogen-fibrin conversion by thrombin and properties of asialofibrin clot.
    Okude M; Yamanaka A; Morimoto Y; Akihama S
    Biol Pharm Bull; 1993 May; 16(5):448-52. PubMed ID: 8364489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Functional analysis for dysfibrinogenemias, Toyama and Adachi, which have a mutation of Aalpha16Arg-->His (CGT-->CAT) with aberrant fibrinopeptide A release].
    Soya K; Takezawa Y; Terasawa F; Okumura N
    Rinsho Byori; 2012 Jun; 60(6):499-505. PubMed ID: 22880226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of desarginine fibrinopeptide B in human blood.
    Eckhardt T; Nossel HL; Hurlet-Jensen A; La Gamma KS; Owen J; Auerbach M
    J Clin Invest; 1981 Mar; 67(3):809-16. PubMed ID: 7204556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homophenotypic Aalpha R16H fibrinogen (Kingsport): uniquely altered polymerization associated with slower fibrinopeptide A than fibrinopeptide B release.
    Galanakis DK; Neerman-Arbez M; Scheiner T; Henschen A; Hubbs D; Nagaswami C; Weisel JW
    Blood Coagul Fibrinolysis; 2007 Dec; 18(8):731-7. PubMed ID: 17982313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the kinetic pathway for liberation of fibrinopeptides during assembly of fibrin.
    Lewis SD; Shields PP; Shafer JA
    J Biol Chem; 1985 Aug; 260(18):10192-9. PubMed ID: 4019507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid sequences of lamprey fibrinopeptides A and B and characterizations of the junctions split by lamprey and mammalian thrombins.
    Cottrell BA; Doolittle RF
    Biochim Biophys Acta; 1976 Dec; 453(2):426-38. PubMed ID: 999898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for four different polymerization sites involved in human fibrin formation.
    Olexa SA; Budzynski AZ
    Proc Natl Acad Sci U S A; 1980 Mar; 77(3):1374-8. PubMed ID: 6929491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substitution of tyrosine for phenylalanine in fibrinopeptide A results in preferential thrombin cleavage of fibrinopeptide B from fibrinogen.
    Rooney MM; Mullin JL; Lord ST
    Biochemistry; 1998 Sep; 37(39):13704-9. PubMed ID: 9753458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibrinopeptide A release is necessary for effective B:b interactions in polymerisation of variant fibrinogens with impaired A:a interactions.
    Soya K; Terasawa F; Okumura N
    Thromb Haemost; 2013 Feb; 109(2):221-8. PubMed ID: 23238100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the location in the thrombin B chain of substrate recognition sites for fibrinopeptide release and factor XIII activation.
    Pirkle H; Theodor I; Christofferson M; Vukasin P; Miyada D
    Thromb Res; 1989 Sep; 55(6):737-46. PubMed ID: 2781534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of divalent cations on the conversion of fibrinogen to fibrin and fibrin polymerization.
    Kanaide H; Uranishi T; Nakamura M
    Am J Hematol; 1982 Nov; 13(3):229-37. PubMed ID: 7180836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.