These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 139922)
1. The effect of calcium ion transport ATPase upon the passive calcium ion permeability of phospholipid vesicles. Jilka RL; Martonosi AN Biochim Biophys Acta; 1977 Apr; 466(1):57-67. PubMed ID: 139922 [TBL] [Abstract][Full Text] [Related]
2. Effect of the purified (Mg2+ + Ca2+)-activated ATPase of sarcoplasmic reticulum upon the passive Ca2+ permeability and ultrastructure of phospholipid vesicles. Jilka RL; Martonosi AN; Tillack TW J Biol Chem; 1975 Sep; 250(18):7511-24. PubMed ID: 126238 [TBL] [Abstract][Full Text] [Related]
3. Proton inactivation of Ca2+ transport by sarcoplasmic reticulum. Berman MC; McIntosh DB; Kench JE J Biol Chem; 1977 Feb; 252(3):994-1001. PubMed ID: 14142 [TBL] [Abstract][Full Text] [Related]
4. Rapid kinetics of calcium ion transport and ATPase activity in the sarcoplasmic reticulum of dystrophic muscle. Verjovski-Almeida S; Inesi G Biochim Biophys Acta; 1979 Nov; 558(1):119-25. PubMed ID: 159072 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle. Martonosi AN Physiol Rev; 1984 Oct; 64(4):1240-320. PubMed ID: 6093162 [TBL] [Abstract][Full Text] [Related]
6. Passive Ca2+ permeability of phospholipid vesicles and sarcoplasmic reticulum membranes. de Boland AR; Jilka RL; Martonosi AN J Biol Chem; 1975 Sep; 250(18):7501-10. PubMed ID: 1165250 [TBL] [Abstract][Full Text] [Related]
7. Stimulatory and inhibitory effects of dimethyl sulfoxide and ethylene glycol on ATPase activity and calcium transport of sarcoplasmic membranes. The R; Hasselbach W Eur J Biochem; 1977 Apr; 74(3):611-21. PubMed ID: 192554 [TBL] [Abstract][Full Text] [Related]
8. Mg2+ and Mn2+ modulation of Ca2+ transport and ATPase activity in sarcoplasmic reticulum vesicles. Chiesi M; Inesi G Arch Biochem Biophys; 1981 May; 208(2):586-92. PubMed ID: 6455090 [No Abstract] [Full Text] [Related]
9. Mechanism of ATP hydrolysis by sarcoplasmic reticulum and the role of phospholipids. Nakamura H; Jilka RL; Boland R; Martonosi AN J Biol Chem; 1976 Sep; 251(17):5414-23. PubMed ID: 134038 [TBL] [Abstract][Full Text] [Related]
10. [ATPase activity and processes of calcium transport in membranes of sarcoplasmic reticulum of skeletal muscles with E-avitaminotic dystrophy]. Kurskiĭ MD; Grigor'eva VA; Medovar EN; Meshkova LI Ukr Biokhim Zh (1978); 1978; 50(1):85-90. PubMed ID: 146930 [TBL] [Abstract][Full Text] [Related]
11. ATP reversible Pi exchange and membrane phosphorylation in sarcoplasmic reticulum vesicles: activation by silver in the absence of a Ca2+ concentration gradient. de Meis L; Sorenson MM Biochemistry; 1975 Jun; 14(12):2739-44. PubMed ID: 125101 [TBL] [Abstract][Full Text] [Related]
12. A fast passive Ca2+ efflux mediated by the (Ca2+ + Mg2+)-ATPase in reconstituted vesicles. Gould GW; McWhirter JM; East JM; Lee AG Biochim Biophys Acta; 1987 Nov; 904(1):45-54. PubMed ID: 2959321 [TBL] [Abstract][Full Text] [Related]
13. Restoration of calcium transport in the trypsin-treated (Ca+ + Mg2+)-dependent adenosine triphosphatase of sarcoplasmic reticulum exposed th sodium dodecyl sulfate. MacLennan DH; Khanna VK; Stewart PS J Biol Chem; 1976 Nov; 251(22):7271-4. PubMed ID: 136448 [TBL] [Abstract][Full Text] [Related]
14. Reactive disulfides trigger Ca2+ release from sarcoplasmic reticulum via an oxidation reaction. Zaidi NF; Lagenaur CF; Abramson JJ; Pessah I; Salama G J Biol Chem; 1989 Dec; 264(36):21725-36. PubMed ID: 2532212 [TBL] [Abstract][Full Text] [Related]
15. Changes in the structure, composition and function of sarcoplasmic-reticulum membrane during development. Sarzala MG; Pilarska M; Zubrzycka E; Michalak M Eur J Biochem; 1975 Sep; 57(1):25-34. PubMed ID: 126156 [TBL] [Abstract][Full Text] [Related]
16. The effect of ionomycin on calcium fluxes in sarcoplasmic reticulum vesicles and liposomes. Beeler TJ; Jona I; Martonosi A J Biol Chem; 1979 Jul; 254(14):6229-31. PubMed ID: 156184 [TBL] [Abstract][Full Text] [Related]
17. Role of phospholipids in the calcium-dependent ATPase of the sarcoplasmic reticulum. Enzymatic and ESR studies with phospholipid-replaced membranes. Hidalgo C; Ikemoto N; Gergely J J Biol Chem; 1976 Jul; 251(14):4224-32. PubMed ID: 180020 [TBL] [Abstract][Full Text] [Related]
18. ATPase activities, Ca2+ transport and phosphoprotein formation in sarcoplasmic reticulum subfractions of fast and slow rabbit muscles. Heilmann C; Brdiczka D; Nickel E; Pette D Eur J Biochem; 1977 Dec; 81(2):211-22. PubMed ID: 145941 [TBL] [Abstract][Full Text] [Related]
19. Mg2+ and ATP effects on K+ activation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum. Jones LR Biochim Biophys Acta; 1979 Oct; 557(1):230-42. PubMed ID: 162038 [TBL] [Abstract][Full Text] [Related]
20. A model for the uptake and release of Ca2+ by sarcoplasmic reticulum. Gould GW; McWhirter JM; East JM; Lee AG Biochem J; 1987 Aug; 245(3):739-49. PubMed ID: 2959279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]