These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 1399243)
41. Antiparasitic efficacy of a novel plant-based functional food using an Ascaris suum model in pigs. Kaplan RM; Storey BE; Vidyashankar AN; Bissinger BW; Mitchell SM; Howell SB; Mason ME; Lee MD; Pedroso AA; Akashe A; Skrypec DJ Acta Trop; 2014 Nov; 139():15-22. PubMed ID: 24979686 [TBL] [Abstract][Full Text] [Related]
42. Host immune reactions and worm kinetics during the expulsion of Ascaris suum in pigs. Miquel N; Roepstorff A; Bailey M; Eriksen L Parasite Immunol; 2005 Mar; 27(3):79-88. PubMed ID: 15882234 [TBL] [Abstract][Full Text] [Related]
43. Comparative efficacy of fenbendazole, dichlorvos, and levamisole HCI against gastrointestinal nematodes of pigs. Marti OG; Stewart TB; Hale OM J Parasitol; 1978 Dec; 64(6):1028-31. PubMed ID: 739296 [TBL] [Abstract][Full Text] [Related]
44. Response to repeated inoculations with Ascaris suum eggs in pigs during the fattening period. I. Studies on worm population kinetics. Eriksen L; Nansen P; Roepstorff A; Lind P; Nilsson O Parasitol Res; 1992; 78(3):241-6. PubMed ID: 1534170 [TBL] [Abstract][Full Text] [Related]
45. Bacillus thuringiensis-derived Cry5B has potent anthelmintic activity against Ascaris suum. Urban JF; Hu Y; Miller MM; Scheib U; Yiu YY; Aroian RV PLoS Negl Trop Dis; 2013; 7(6):e2263. PubMed ID: 23818995 [TBL] [Abstract][Full Text] [Related]
46. Protective immunity to Ascaris suum: analysis of swine peripheral blood cell subsets using monoclonal antibodies and flow cytometry. Lunney JK; Urban JF; Johnson LA Vet Parasitol; 1986 Mar; 20(1-3):117-31. PubMed ID: 2939618 [TBL] [Abstract][Full Text] [Related]
47. False-positive Ascaris suum egg counts in pigs. Boes J; Nansen P; Stephenson LS Int J Parasitol; 1997 Jul; 27(7):833-8. PubMed ID: 9279587 [TBL] [Abstract][Full Text] [Related]
48. The effect of immunization of pigs with Ascaris suum cuticle components on the development of resistance to parenteral migration during a challenge infection. Hill DE; Fetterer RH; Romanowski RD; Urban JF Vet Immunol Immunopathol; 1994 Aug; 42(2):161-9. PubMed ID: 7975188 [TBL] [Abstract][Full Text] [Related]
49. Environmental contamination and transmission of Ascaris suum in Danish organic pig farms. Katakam KK; Thamsborg SM; Dalsgaard A; Kyvsgaard NC; Mejer H Parasit Vectors; 2016 Feb; 9():80. PubMed ID: 26860206 [TBL] [Abstract][Full Text] [Related]
50. Immunoproteomic approach for identification of Ascaris suum proteins recognized by pigs with porcine ascariasis. González-Miguel J; Morchón R; Gussoni S; Bossetti E; Hormaeche M; Kramer LH; Simón F Vet Parasitol; 2014 Jul; 203(3-4):343-8. PubMed ID: 24813788 [TBL] [Abstract][Full Text] [Related]
51. Cloning and characterisation of a highly immunoreactive 37 kDa antigen with multi-immunoglobulin domains from the swine roundworm Ascaris suum. Tsuji N; Kasuga-Aoki H; Isobe T; Arakawa T; Matsumoto Y Int J Parasitol; 2002 Dec; 32(14):1739-46. PubMed ID: 12464420 [TBL] [Abstract][Full Text] [Related]
52. A comparison of the efficacy of two ivermectin formulations against larval and adult Ascaris suum and Oesophagostomum dentatum in experimentally infected pigs. Borgsteede FH; Gaasenbeek CP; Nicoll S; Domangue RJ; Abbott EM Vet Parasitol; 2007 May; 146(3-4):288-93. PubMed ID: 17418952 [TBL] [Abstract][Full Text] [Related]
53. Immunization of pigs against experimental Ascaris suum infection by feeding ultraviolet-attenuated eggs. Tromba FG J Parasitol; 1978 Aug; 64(4):651-6. PubMed ID: 682067 [TBL] [Abstract][Full Text] [Related]
54. Evaluation of a serodiagnostic test using Ascaris suum haemoglobin for the detection of roundworm infections in pig populations. Vlaminck J; Nejsum P; Vangroenweghe F; Thamsborg SM; Vercruysse J; Geldhof P Vet Parasitol; 2012 Oct; 189(2-4):267-73. PubMed ID: 22560331 [TBL] [Abstract][Full Text] [Related]
55. A role for eosinophils in the intestinal immunity against infective Ascaris suum larvae. Masure D; Vlaminck J; Wang T; Chiers K; Van den Broeck W; Vercruysse J; Geldhof P PLoS Negl Trop Dis; 2013; 7(3):e2138. PubMed ID: 23556022 [TBL] [Abstract][Full Text] [Related]
56. Effect of pyrantel tartrate and carbadox on acquisition of the swine kidneyworm (Stephanurus dentatus) and other parasites by pigs on contaminated lots. Stewart TB; Marti OG; Hale OM; Lomax LG Am J Vet Res; 1979 Oct; 40(10):1472-5. PubMed ID: 160763 [TBL] [Abstract][Full Text] [Related]
57. Identification of larval-stage antigens of ascaris suum recognized with immune sera from pigs. Kasug-Aoki H; Tsuji N; Suzuki K; Arakawa T; Matsumoto Y; Isobe T J Vet Med Sci; 2001 Jun; 63(6):683-5. PubMed ID: 11459018 [TBL] [Abstract][Full Text] [Related]
58. Functional study of a genetic marker allele associated with resistance to Ascaris suum in pigs. Skallerup P; Thamsborg SM; Jørgensen CB; Enemark HL; Yoshida A; Göring HH; Fredholm M; Nejsum P Parasitology; 2014 May; 141(6):777-87. PubMed ID: 24709292 [TBL] [Abstract][Full Text] [Related]
59. Intestinal parasites in swine in the Nordic countries: multilevel modelling of Ascaris suum infections in relation to production factors. Roepstorff A; Nilsson O; O'Callaghan CJ; Oksanen A; Gjerde B; Richter SH; Ortenberg EO; Christensson D; Nansen P; Eriksen L; Medley GF Parasitology; 1999 Nov; 119 ( Pt 5)():521-34. PubMed ID: 10599084 [TBL] [Abstract][Full Text] [Related]
60. Embryonation and infectivity of Ascaris suum eggs. A comparison of eggs collected from worm uteri with eggs isolated from pig faeces. Oksanen A; Eriksen L; Roepstorff A; Ilsøe B; Nansen P; Lind P Acta Vet Scand; 1990; 31(4):393-8. PubMed ID: 2099616 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]