These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 13993)

  • 1. Heart rate and ventilation in relation to venous [K+], osmolality, pH, PCO2, PO2, [orthophosphate], and [lactate] at transition from rest to exercise in athletes and non-athletes.
    Tibes U; Hemmer B; Böning D
    Eur J Appl Physiol Occup Physiol; 1977 Jan; 36(2):127-40. PubMed ID: 13993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships of femoral venous [K+], PO2, osmolality, and [orthophosphate) with heart rate, ventilation, and leg blood flow during bicycle exercise in athletes and non-athletes.
    Tibes U; Hemmer B; Böning D; Schweigart U
    Eur J Appl Physiol Occup Physiol; 1976 Aug; 35(3):201-14. PubMed ID: 8310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulmonary ventilation, blood gases, and blood pH after training of the arms or the legs.
    Rasmussen B; Klausen K; Clausen JP; Trap-Jensen J
    J Appl Physiol; 1975 Feb; 38(2):250-6. PubMed ID: 235505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of O2 and CO2 in sustained exercise hyperemia of canine skeletal muscle.
    Stowe DF; Owen TL; Anderson DK; Haddy FJ; Scott JB
    Am J Physiol; 1975 Jul; 229(1):28-33. PubMed ID: 238405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of roles of potassium, inorganic phosphate, osmolarity, pH, pCO2, pO2, and adenosine or AMP in exercise and reactive hyperemias in canine hindlimb muscles.
    Tominaga S; Suzuki T; Nakamura T
    Tohoku J Exp Med; 1973 Apr; 109(4):347-63. PubMed ID: 4722249
    [No Abstract]   [Full Text] [Related]  

  • 6. [Metabolism of skeletal muscle. I. Glucose, lactate, pyruvate and free fatty acids in arterial and venous blood of working muscles. Examinations of well trained athletes].
    Keul J; Doll E; Keppler D
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1968; 301(3):198-213. PubMed ID: 5244210
    [No Abstract]   [Full Text] [Related]  

  • 7. Time course of muscular blood metabolites during forearm rhythmic exercise in hypoxia.
    Raynaud J; Douguet D; Legros P; Capderou A; Raffestin B; Durand J
    J Appl Physiol (1985); 1986 Apr; 60(4):1203-8. PubMed ID: 3700304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in potassium content of erythrocytes during exercise in man.
    Kawakami Y; Kishi F; Uchiyama K; Irie T; Murao M
    Eur J Clin Invest; 1975 Sep; 5(5):391-5. PubMed ID: 241650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of stimulation parameters on the release of adenosine, lactate and CO2 from contracting dog gracilis muscle.
    Achike FI; Ballard HJ
    J Physiol; 1993 Apr; 463():107-21. PubMed ID: 8246177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interrelationship between pH, plasma potassium concentration and ventilation during intense continuous exercise in man.
    Busse MW; Maassen N; Konrad H; Böning D
    Eur J Appl Physiol Occup Physiol; 1989; 59(4):256-61. PubMed ID: 2511013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of CO2, O2, and acid in arteriovenous [H+] difference during muscle contractions.
    Stainsby WN; Eitzman PD
    J Appl Physiol (1985); 1988 Oct; 65(4):1803-10. PubMed ID: 2846498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of blood gas, pH, lactate, potassium on the oxygen uptake time courses during constant-load bicycle exercise.
    Yasuda Y; Ishida K; Miyamura M
    Jpn J Physiol; 1992; 42(2):233-37. PubMed ID: 1434091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lack of influence of potassium or osmolality on steady-state exercise hyperemia.
    Mohrman DE
    Am J Physiol; 1982 Jun; 242(6):H949-54. PubMed ID: 7091354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of hypoxia on arterial and venous blood levels of oxygen, carbon dioxide, hydrogen ions and lactate during incremental forearm exercise.
    Yoshida T; Udo M; Chida M; Ichioka M; Makiguchi K
    Eur J Appl Physiol Occup Physiol; 1989; 58(7):772-7. PubMed ID: 2500338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral blood flow, circulation, and blood homeostasis of dogs during slow cyanide poisoning and after treatment with 4-dimethylaminophenol.
    Klimmek R; Roddewig C; Fladerer H; Weger N
    Arch Toxicol; 1982 May; 50(1):65-76. PubMed ID: 6810847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of pulmonary ventilation during exercise and mediators in the blood: CO2 and hydrogen ion.
    Sutton JR; Jones NL
    Med Sci Sports; 1979; 11(2):198-203. PubMed ID: 40091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Metabolism of skeletal muscle. II. Oxygen pressure, carbon dioxide pressure, pH, standard bicarbonate and base excess in the venous blood of working muscles. Examinations of well trained athletes].
    Doll E; Keul J
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1968; 301(3):214-29. PubMed ID: 5244211
    [No Abstract]   [Full Text] [Related]  

  • 18. Mixed venous PO2, (PCO2,) ph and cardiac output during exercise in trained subjects. SAM-TR-70-5.
    Cruz JC; Rahn H; Farhi LE
    Tech Rep SAM-TR; 1970 Jan; ():110-6. PubMed ID: 5310901
    [No Abstract]   [Full Text] [Related]  

  • 19. Control of blood-gas and acid-base status during isometric exercise in humans.
    Poole DC; Ward SA; Whipp BJ
    J Physiol; 1988 Feb; 396():365-77. PubMed ID: 3137328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood ion regulation during repeated maximal exercise and recovery in humans.
    Lindinger MI; Heigenhauser GJ; McKelvie RS; Jones NL
    Am J Physiol; 1992 Jan; 262(1 Pt 2):R126-36. PubMed ID: 1733331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.