These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1400004)

  • 1. Modeling the effects of hypoxia on ATP turnover in exercising muscle.
    Arthur PG; Hogan MC; Bebout DE; Wagner PD; Hochachka PW
    J Appl Physiol (1985); 1992 Aug; 73(2):737-42. PubMed ID: 1400004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.
    Korzeniewski B; Zoladz JA
    Biochem J; 2004 May; 379(Pt 3):703-10. PubMed ID: 14744260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction to respiratory control in skeletal muscle.
    Starnes JW
    Med Sci Sports Exerc; 1994 Jan; 26(1):27-9. PubMed ID: 8133734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactate metabolism during exercise: analysis by an integrative systems model.
    Cabrera ME; Saidel GM; Kalhan SC
    Am J Physiol; 1999 Nov; 277(5):R1522-36. PubMed ID: 10564227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy metabolism in muscle approaching maximal rates of oxygen utilization.
    Wilson DF
    Med Sci Sports Exerc; 1995 Jan; 27(1):54-9. PubMed ID: 7898338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling.
    Medbø JI; Tabata I
    J Appl Physiol (1985); 1993 Oct; 75(4):1654-60. PubMed ID: 8282617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular regulation analysis of integrative effects of hypoxia on the energetics of contracting skeletal muscle in vivo.
    Beuste C; Miraux S; Deschodt-Arsac VJ; Thiaudiere E; Franconi JM; Diolez P; Arsac LM
    Biochem J; 2009 Apr; 420(1):67-72. PubMed ID: 19228117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-energy phosphate metabolism in the exercising muscle of patients with peripheral arterial disease.
    Schocke M; Esterhammer R; Greiner A
    Vasa; 2008 Aug; 37(3):199-210. PubMed ID: 18690587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of anaerobic energy production during intense exercise.
    Bangsbo J
    Med Sci Sports Exerc; 1998 Jan; 30(1):47-52. PubMed ID: 9475643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic suppression during protracted exposure to hypoxia in the jumbo squid, Dosidicus gigas, living in an oxygen minimum zone.
    Seibel BA; Häfker NS; Trübenbach K; Zhang J; Tessier SN; Pörtner HO; Rosa R; Storey KB
    J Exp Biol; 2014 Jul; 217(Pt 14):2555-68. PubMed ID: 24855676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of metabolism: the rest-to-work transition in skeletal muscle.
    Wilson DF
    Am J Physiol Endocrinol Metab; 2015 Nov; 309(9):E793-801. PubMed ID: 26394666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitoenergetic Dysfunction Triggers a Rapid Compensatory Increase in Steady-State Glucose Flux.
    Liemburg-Apers DC; Schirris TJ; Russel FG; Willems PH; Koopman WJ
    Biophys J; 2015 Oct; 109(7):1372-86. PubMed ID: 26445438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial coupling in humans: assessment of the P/O2 ratio at the onset of calf exercise.
    Cettolo V; Cautero M; Tam E; Francescato MP
    Eur J Appl Physiol; 2007 Apr; 99(6):593-604. PubMed ID: 17206437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does energy demand have an additional control in ischemia or are current models of metabolic control adequate at extremes?
    Connett RJ; Gayeski TE; Honig CR
    Adv Exp Med Biol; 1994; 361():509-20. PubMed ID: 7597977
    [No Abstract]   [Full Text] [Related]  

  • 16. Comparative determination of energy production rates and mitochondrial function using different 31P MRS quantitative methods in sedentary and trained subjects.
    Layec G; Bringard A; Le Fur Y; Vilmen C; Micallef JP; Perrey S; Cozzone PJ; Bendahan D
    NMR Biomed; 2011 May; 24(4):425-38. PubMed ID: 20963767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altitude acclimatization and energy metabolic adaptations in skeletal muscle during exercise.
    Green HJ; Sutton JR; Wolfel EE; Reeves JT; Butterfield GE; Brooks GA
    J Appl Physiol (1985); 1992 Dec; 73(6):2701-8. PubMed ID: 1490988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solving the common problem: matching ATP synthesis to ATP demand during exercise.
    Hochachka PW
    Adv Vet Sci Comp Med; 1994; 38A():41-56. PubMed ID: 7801835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Anaerobic capacity--theoretical basis and methods for practical testing].
    Medbø JI
    Tidsskr Nor Laegeforen; 1993 Feb; 113(5):591-4. PubMed ID: 8465318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of oxygen consumption at the onset of exercise.
    Hughson RL; Tschakovsky ME; Houston ME
    Exerc Sport Sci Rev; 2001 Jul; 29(3):129-33. PubMed ID: 11474961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.