BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 1400164)

  • 21. The lac operon of Lactobacillus casei contains lacT, a gene coding for a protein of the Bg1G family of transcriptional antiterminators.
    Alpert CA; Siebers U
    J Bacteriol; 1997 Mar; 179(5):1555-62. PubMed ID: 9045813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of lactose utilization genes in Staphylococcus xylosus.
    Bassias J; Brückner R
    J Bacteriol; 1998 May; 180(9):2273-9. PubMed ID: 9573174
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of an inducible fructose phosphotransferase operon in Streptococcus gordonii biofilm formation.
    Loo CY; Mitrakul K; Voss IB; Hughes CV; Ganeshkumar N
    J Bacteriol; 2003 Nov; 185(21):6241-54. PubMed ID: 14563858
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism.
    Crow VL; Davey GP; Pearce LE; Thomas TD
    J Bacteriol; 1983 Jan; 153(1):76-83. PubMed ID: 6294064
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptional regulation and evolution of lactose genes in the galactose-lactose operon of Lactococcus lactis NCDO2054.
    Vaughan EE; Pridmore RD; Mollet B
    J Bacteriol; 1998 Sep; 180(18):4893-902. PubMed ID: 9733693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei.
    Gosalbes MJ; Monedero V; Pérez-Martínez G
    J Bacteriol; 1999 Jul; 181(13):3928-34. PubMed ID: 10383959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative functional analysis of the lac operons in Streptococcus pyogenes.
    Loughman JA; Caparon MG
    Mol Microbiol; 2007 Apr; 64(2):269-80. PubMed ID: 17371500
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation, characterization, and nucleotide sequence of the Streptococcus mutans mannitol-phosphate dehydrogenase gene and the mannitol-specific factor III gene of the phosphoenolpyruvate phosphotransferase system.
    Honeyman AL; Curtiss R
    Infect Immun; 1992 Aug; 60(8):3369-75. PubMed ID: 1322373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The lactose transporter in Leuconostoc lactis is a new member of the LacS subfamily of galactoside-pentose-hexuronide translocators.
    Vaughan EE; David S; de Vos WM
    Appl Environ Microbiol; 1996 May; 62(5):1574-82. PubMed ID: 8633855
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two gene clusters coordinate galactose and lactose metabolism in Streptococcus gordonii.
    Zeng L; Martino NC; Burne RA
    Appl Environ Microbiol; 2012 Aug; 78(16):5597-605. PubMed ID: 22660715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Streptococcus mutans serotype c tagatose 6-phosphate pathway gene cluster.
    Jagusztyn-Krynicka EK; Hansen JB; Crow VL; Thomas TD; Honeyman AL; Curtiss R
    J Bacteriol; 1992 Oct; 174(19):6152-8. PubMed ID: 1328153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K-12: primary structure and identification of the DNA-binding domain.
    Zeng G; Ye S; Larson TJ
    J Bacteriol; 1996 Dec; 178(24):7080-9. PubMed ID: 8955387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization and sequence analysis of the scrA gene encoding enzyme IIScr of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system.
    Sato Y; Poy F; Jacobson GR; Kuramitsu HK
    J Bacteriol; 1989 Jan; 171(1):263-71. PubMed ID: 2536656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular cloning and DNA sequence of lacE, the gene encoding the lactose-specific enzyme II of the phosphotransferase system of Lactobacillus casei. Evidence that a cysteine residue is essential for sugar phosphorylation.
    Alpert CA; Chassy BM
    J Biol Chem; 1990 Dec; 265(36):22561-8. PubMed ID: 2125053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dimeric lac repressors exhibit phase-dependent co-operativity.
    Müller J; Barker A; Oehler S; Müller-Hill B
    J Mol Biol; 1998 Dec; 284(4):851-7. PubMed ID: 9837708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning and nucleotide sequence analysis of the Streptococcus mutans membrane-bound, proton-translocating ATPase operon.
    Smith AJ; Quivey RG; Faustoferri RC
    Gene; 1996 Dec; 183(1-2):87-96. PubMed ID: 8996091
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lactose transport system of Streptococcus thermophilus. The role of histidine residues.
    Poolman B; Modderman R; Reizer J
    J Biol Chem; 1992 May; 267(13):9150-7. PubMed ID: 1577752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular cloning and nucleotide sequence of the factor IIIlac gene of Lactobacillus casei.
    Alpert CA; Chassy BM
    Gene; 1988; 62(2):277-88. PubMed ID: 3130296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence alignment and homology threading reveals prokaryotic and eukaryotic proteins similar to lactose permease.
    Kasho VN; Smirnova IN; Kaback HR
    J Mol Biol; 2006 May; 358(4):1060-70. PubMed ID: 16574153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coordinated Regulation of the EII
    Zeng L; Chakraborty B; Farivar T; Burne RA
    Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28821551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.