These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 1400169)

  • 21. Structure of the core and central channel of bacterial flagella.
    Namba K; Yamashita I; Vonderviszt F
    Nature; 1989 Dec; 342(6250):648-54. PubMed ID: 2687696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pairwise perturbation of flagellin subunits. The structural basis for the differences between plain and complex bacterial flagellar filaments.
    Trachtenberg S; DeRosier DJ; Aizawa S; Macnab RM
    J Mol Biol; 1986 Aug; 190(4):569-76. PubMed ID: 3537316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular genetics of the flgI region and its role in flagellum biosynthesis in Caulobacter crescentus.
    Khambaty FM; Ely B
    J Bacteriol; 1992 Jun; 174(12):4101-9. PubMed ID: 1597425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple large filament bundles observed in Caulobacter crescentus by electron cryotomography.
    Briegel A; Dias DP; Li Z; Jensen RB; Frangakis AS; Jensen GJ
    Mol Microbiol; 2006 Oct; 62(1):5-14. PubMed ID: 16987173
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional structure of the frozen-hydrated flagellar filament. The left-handed filament of Salmonella typhimurium.
    Trachtenberg S; DeRosier DJ
    J Mol Biol; 1987 Jun; 195(3):581-601. PubMed ID: 3309339
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure analysis of the flagellar cap-filament complex by electron cryomicroscopy and single-particle image analysis.
    Yonekura K; Maki-Yonekura S; Namba K
    J Struct Biol; 2001; 133(2-3):246-53. PubMed ID: 11472095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Image reconstruction of the flagellar basal body of Caulobacter crescentus.
    Stallmeyer MJ; Hahnenberger KM; Sosinsky GE; Shapiro L; DeRosier DJ
    J Mol Biol; 1989 Feb; 205(3):511-8. PubMed ID: 2926815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purification and CryoEM Image Analysis of the Bacterial Flagellar Filament.
    Yamaguchi T; Miyata T; Makino F; Namba K
    Methods Mol Biol; 2023; 2646():43-53. PubMed ID: 36842105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Divergence of quaternary structures among bacterial flagellar filaments.
    Galkin VE; Yu X; Bielnicki J; Heuser J; Ewing CP; Guerry P; Egelman EH
    Science; 2008 Apr; 320(5874):382-5. PubMed ID: 18420936
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy.
    Yonekura K; Maki-Yonekura S; Namba K
    Nature; 2003 Aug; 424(6949):643-50. PubMed ID: 12904785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Refining the structure of the Halobacterium salinarum flagellar filament using the iterative helical real space reconstruction method: insights into polymorphism.
    Trachtenberg S; Galkin VE; Egelman EH
    J Mol Biol; 2005 Feb; 346(3):665-76. PubMed ID: 15713454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The axial alpha-helices and radial spokes in the core of the cryo-negatively stained complex flagellar filament of Pseudomonas rhodos: recovering high-resolution details from a flexible helical assembly.
    Cohen-Krausz S; Trachtenberg S
    J Mol Biol; 2003 Aug; 331(5):1093-108. PubMed ID: 12927544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PflI, a protein involved in flagellar positioning in Caulobacter crescentus.
    Obuchowski PL; Jacobs-Wagner C
    J Bacteriol; 2008 Mar; 190(5):1718-29. PubMed ID: 18165296
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A molecular switch: subunit rotations involved in the right-handed to left-handed transitions of Salmonella typhimurium flagellar filaments.
    Trachtenberg S; DeRosier DJ
    J Mol Biol; 1991 Jul; 220(1):67-77. PubMed ID: 2067019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A mutation that uncouples flagellum assembly from transcription alters the temporal pattern of flagellar gene expression in Caulobacter crescentus.
    Mangan EK; Bartamian M; Gober JW
    J Bacteriol; 1995 Jun; 177(11):3176-84. PubMed ID: 7768816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The structure of the helically perturbed flagellar filament of Pseudomonas rhodos: implications for the absence of the outer domain in other complex flagellins and for the flexibility of the radial spokes.
    Cohen-Krausz S; Trachtenberg S
    Mol Microbiol; 2003 Jun; 48(5):1305-16. PubMed ID: 12787357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The conserved flaF gene has a critical role in coupling flagellin translation and assembly in Caulobacter crescentus.
    Llewellyn M; Dutton RJ; Easter J; O'donnol D; Gober JW
    Mol Microbiol; 2005 Aug; 57(4):1127-42. PubMed ID: 16091049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Caulobacter crescentus flaFG region regulates synthesis and assembly of flagellin proteins encoded by two genetically unlinked gene clusters.
    Schoenlein PV; Lui J; Gallman L; Ely B
    J Bacteriol; 1992 Oct; 174(19):6046-53. PubMed ID: 1400155
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional structure of the complex flagellar filament of Rhizobium lupini and its relation to the structure of the plain filament.
    Trachtenberg S; DeRosier DJ; Macnab RM
    J Mol Biol; 1987 Jun; 195(3):603-20. PubMed ID: 3656426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The flagellar filament structure of the extreme acidothermophile Sulfolobus shibatae B12 suggests that archaeabacterial flagella have a unique and common symmetry and design.
    Cohen-Krausz S; Trachtenberg S
    J Mol Biol; 2008 Jan; 375(4):1113-24. PubMed ID: 18068187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.