These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1400233)

  • 41. The DAL7 promoter consists of multiple elements that cooperatively mediate regulation of the gene's expression.
    Yoo HS; Cooper TG
    Mol Cell Biol; 1989 Aug; 9(8):3231-43. PubMed ID: 2552287
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcriptional regulation by an upstream repression sequence from the yeast enolase gene ENO1.
    Carmen AA; Brindle PK; Park CS; Holland MJ
    Yeast; 1995 Sep; 11(11):1031-43. PubMed ID: 7502579
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Candidate regulatory sequence elements for cell cycle-dependent transcription in Saccharomyces cerevisiae.
    Wolfsberg TG; Gabrielian AE; Campbell MJ; Cho RJ; Spouge JL; Landsman D
    Genome Res; 1999 Aug; 9(8):775-92. PubMed ID: 10447512
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Upstream induction sequence, the cis-acting element required for response to the allantoin pathway inducer and enhancement of operation of the nitrogen-regulated upstream activation sequence in Saccharomyces cerevisiae.
    van Vuuren HJ; Daugherty JR; Rai R; Cooper TG
    J Bacteriol; 1991 Nov; 173(22):7186-95. PubMed ID: 1938916
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Replication protein A binds to regulatory elements in yeast DNA repair and DNA metabolism genes.
    Singh KK; Samson L
    Proc Natl Acad Sci U S A; 1995 May; 92(11):4907-11. PubMed ID: 7761422
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interactions of the yeast centromere and promoter factor, Cpf1p, with the cytochrome c1 upstream region and functional implications on regulated gene expression.
    Oechsner U; Bandlow W
    Nucleic Acids Res; 1996 Jun; 24(12):2395-403. PubMed ID: 8710512
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Saccharomyces cerevisiae PUT3 activator protein associates with proline-specific upstream activation sequences.
    Siddiqui AH; Brandriss MC
    Mol Cell Biol; 1989 Nov; 9(11):4706-12. PubMed ID: 2689862
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional analysis of the regulatory region of the yeast phosphatidylserine synthase gene, PSS.
    Kodaki T; Nikawa J; Hosaka K; Yamashita S
    J Bacteriol; 1991 Dec; 173(24):7992-5. PubMed ID: 1660458
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetic evidence for a role for MCM1 in the regulation of arginine metabolism in Saccharomyces cerevisiae.
    Messenguy F; Dubois E
    Mol Cell Biol; 1993 Apr; 13(4):2586-92. PubMed ID: 8455631
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mutations in target DNA elements of yeast HAP1 modulate its transcriptional activity without affecting DNA binding.
    Ha N; Hellauer K; Turcotte B
    Nucleic Acids Res; 1996 Apr; 24(8):1453-9. PubMed ID: 8628677
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sequences of two adjacent genes, one (DAL2) encoding allantoicase and another (DCG1) sensitive to nitrogen-catabolite repression in Saccharomyces cerevisiae.
    Yoo HS; Cooper TG
    Gene; 1991 Jul; 104(1):55-62. PubMed ID: 1916277
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Determination of the DNA-binding sequences of ARGR proteins to arginine anabolic and catabolic promoters.
    Messenguy F; Dubois E; Boonchird C
    Mol Cell Biol; 1991 May; 11(5):2852-63. PubMed ID: 2017180
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The INO1 promoter of Saccharomyces cerevisiae includes an upstream repressor sequence (URS1) common to a diverse set of yeast genes.
    Lopes JM; Schulze KL; Yates JW; Hirsch JP; Henry SA
    J Bacteriol; 1993 Jul; 175(13):4235-8. PubMed ID: 8320238
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expression of a yeast gene can be blocked by insertion of short yeast DNA fragments between a UAS and the TATA box.
    Vincent O; Gancedo JM
    Curr Genet; 1995 Mar; 27(4):387-9. PubMed ID: 7614563
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional analysis of the regulatory region adjacent to the cargB gene of Saccharomyces cerevisiae. Nucleotide sequence, gene fusion experiments and cis-dominant regulatory mutation analysis.
    Degols G
    Eur J Biochem; 1987 Nov; 169(1):193-200. PubMed ID: 2824201
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mutations that alter transcriptional activation but not DNA binding in the zinc finger of yeast activator HAPI.
    Kim KS; Guarente L
    Nature; 1989 Nov; 342(6246):200-3. PubMed ID: 2509943
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Point mutation generates constitutive expression of an inducible eukaryotic gene.
    Sumrada RA; Cooper TG
    Proc Natl Acad Sci U S A; 1985 Feb; 82(3):643-7. PubMed ID: 2983306
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A cell cycle-responsive transcriptional control element and a negative control element in the gene encoding DNA polymerase alpha in Saccharomyces cerevisiae.
    Gordon CB; Campbell JL
    Proc Natl Acad Sci U S A; 1991 Jul; 88(14):6058-62. PubMed ID: 2068085
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Participation of transcriptional and post-transcriptional regulatory mechanisms in the control of arginine metabolism in yeast.
    Messenguy F; Dubois E
    Mol Gen Genet; 1983; 189(1):148-56. PubMed ID: 6343780
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genetic engineering of a sake yeast producing no urea by successive disruption of arginase gene.
    Kitamoto K; Oda K; Gomi K; Takahashi K
    Appl Environ Microbiol; 1991 Jan; 57(1):301-6. PubMed ID: 2036017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.