BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 1400242)

  • 1. Isolation and characterization of the high-affinity K(+)-translocating ATPase from Rhodobacter sphaeroides.
    Abee T; Siebers A; Altendorf K; Konings WN
    J Bacteriol; 1992 Nov; 174(21):6911-7. PubMed ID: 1400242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The high-affinity K+-translocating ATPase complex from Bacillus acidocaldarius consists of three subunits.
    Hafer J; Siebers A; Bakker EP
    Mol Microbiol; 1989 Apr; 3(4):487-95. PubMed ID: 2527329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The K+-translocating Kdp-ATPase from Escherichia coli. Purification, enzymatic properties and production of complex- and subunit-specific antisera.
    Siebers A; Altendorf K
    Eur J Biochem; 1988 Dec; 178(1):131-40. PubMed ID: 2849541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-affinity potassium uptake system in Bacillus acidocaldarius showing immunological cross-reactivity with the Kdp system from Escherichia coli.
    Bakker EP; Borchard A; Michels M; Altendorf K; Siebers A
    J Bacteriol; 1987 Sep; 169(9):4342-8. PubMed ID: 2957359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription properties of RNA polymerase holoenzymes isolated from the purple nonsulfur bacterium Rhodobacter sphaeroides.
    Karls RK; Jin DJ; Donohue TJ
    J Bacteriol; 1993 Dec; 175(23):7629-38. PubMed ID: 8244932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of the chaperonin 10 and chaperonin 60 proteins from Rhodobacter sphaeroides.
    Terlesky KC; Tabita FR
    Biochemistry; 1991 Aug; 30(33):8181-6. PubMed ID: 1678280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmoregulation in Bacillus subtilis under potassium limitation: a new inducible K+-stimulated, VO4(3-)-inhibited ATPase.
    Sebestian J; Petrmichlová Z; Sebestianová S; Náprstek J; Svobodová J
    Can J Microbiol; 2001 Dec; 47(12):1116-25. PubMed ID: 11822838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a binding protein-dependent glutamate transport system of Rhodobacter sphaeroides.
    Jacobs MH; Driessen AJ; Konings WN
    J Bacteriol; 1995 Apr; 177(7):1812-6. PubMed ID: 7896705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The bacterial Kdp K(+)-ATPase and its relation to other transport ATPases, such as the Na+/K(+)- and Ca2(+)-ATPases in higher organisms.
    Epstein W; Walderhaug MO; Polarek JW; Hesse JE; Dorus E; Daniel JM
    Philos Trans R Soc Lond B Biol Sci; 1990 Jan; 326(1236):479-86; discussion 486-7. PubMed ID: 1970651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-affinity potassium uptake system in the archaeon Methanobacterium thermoautotrophicum: overproduction of a 31-kilodalton membrane protein during growth on low-potassium medium.
    Glasemacher J; Siebers A; Altendorf K; Schönheit P
    J Bacteriol; 1996 Feb; 178(3):728-34. PubMed ID: 8550507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single amino acid substitution in the putative transmembrane helix V in KdpB of the KdpFABC complex of Escherichia coli uncouples ATPase activity and ion transport.
    Bramkamp M; Altendorf K
    Biochemistry; 2005 Jun; 44(23):8260-6. PubMed ID: 15938615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnesium chelatase from Rhodobacter sphaeroides: initial characterization of the enzyme using purified subunits and evidence for a BchI-BchD complex.
    Gibson LC; Jensen PE; Hunter CN
    Biochem J; 1999 Jan; 337 ( Pt 2)(Pt 2):243-51. PubMed ID: 9882621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid, high yield purification and characterization of the K(+)-translocating Kdp-ATPase from Escherichia coli.
    Siebers A; Kollmann R; Dirkes G; Altendorf K
    J Biol Chem; 1992 Jun; 267(18):12717-21. PubMed ID: 1535624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presence of Na+-stimulated P-type ATPase in the membrane of a facultatively anaerobic alkaliphile, Exiguobacterium aurantiacum.
    Koyama N
    Curr Microbiol; 1999 Jul; 39(1):27-30. PubMed ID: 10387113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of 3,4-dihydroxyphenylalanine oxidative deaminase from Rhodobacter sphaeroides OU5.
    Ranjith NK; Ramana ChV; Sasikala Ch
    Can J Microbiol; 2008 Oct; 54(10):829-34. PubMed ID: 18923551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-driven potassium transport in right-side-out membrane vesicles via the Kdp system of Escherichia coli.
    Kollmann R; Altendorf K
    Biochim Biophys Acta; 1993 Jun; 1143(1):62-6. PubMed ID: 8499455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The KdpF subunit is part of the K(+)-translocating Kdp complex of Escherichia coli and is responsible for stabilization of the complex in vitro.
    Gassel M; Möllenkamp T; Puppe W; Altendorf K
    J Biol Chem; 1999 Dec; 274(53):37901-7. PubMed ID: 10608856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and membrane reconstitution of catalytically active Menkes copper-transporting P-type ATPase (MNK; ATP7A).
    Hung YH; Layton MJ; Voskoboinik I; Mercer JF; Camakaris J
    Biochem J; 2007 Jan; 401(2):569-79. PubMed ID: 17009961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of ATPase Activity of Free and Immobilized Chromatophore Membrane Vesicles of Rhodobacter sphaeroides.
    Kim H; Tong X; Choi S; Lee J
    J Microbiol Biotechnol; 2017 Dec; 27(12):2173-2179. PubMed ID: 29032642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrogenic K+ transport by the Kdp-ATPase of Escherichia coli.
    Fendler K; Dröse S; Altendorf K; Bamberg E
    Biochemistry; 1996 Jun; 35(24):8009-17. PubMed ID: 8672505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.