These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 1400328)

  • 1. Copper transfer and activation of the Streptomyces apotyrosinase are mediated through a complex formation between apotyrosinase and its trans-activator MelC1.
    Chen LY; Leu WM; Wang KT; Lee YH
    J Biol Chem; 1992 Oct; 267(28):20100-7. PubMed ID: 1400328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational study of Streptomyces tyrosinase trans-activator MelC1. MelC1 is likely a chaperone for apotyrosinase.
    Chen LY; Chen MY; Leu WM; Tsai TY; Lee YH
    J Biol Chem; 1993 Sep; 268(25):18710-6. PubMed ID: 8360164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secretion of the Streptomyces tyrosinase is mediated through its trans-activator protein, MelC1.
    Leu WM; Chen LY; Liaw LL; Lee YH
    J Biol Chem; 1992 Oct; 267(28):20108-13. PubMed ID: 1400329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histidine residues 102 and 117 of MelC1 play different roles in the chaperone function for Streptomyces apotyrosinase.
    Liaw LL; Lee YH
    Biochem Biophys Res Commun; 1995 Sep; 214(2):447-53. PubMed ID: 7677750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A trans-acting gene is required for the phenotypic expression of a tyrosinase gene in Streptomyces.
    Lee YH; Chen BF; Wu SY; Leu WM; Lin JJ; Chen CW; Lo SC
    Gene; 1988 May; 65(1):71-81. PubMed ID: 2840357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of copper ligands in the activation and secretion of Streptomyces tyrosinase.
    Tsai TY; Lee YH
    J Biol Chem; 1998 Jul; 273(30):19243-50. PubMed ID: 9668113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cloned ompR-like gene of Streptomyces lividans 66 suppresses defective melC1, a putative copper-transfer gene.
    Tseng HC; Chen CW
    Mol Microbiol; 1991 May; 5(5):1187-96. PubMed ID: 1956295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous expression of tyrosinase (MelC2) from Streptomyces avermitilis MA4680 in E. coli and its application for ortho-hydroxylation of resveratrol to produce piceatannol.
    Lee N; Lee SH; Baek K; Kim BG
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):7915-24. PubMed ID: 26036705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The melanin operon of Streptomyces antibioticus: expression and use as a marker in gram-negative bacteria.
    Tseng HC; Lin CK; Hsu BJ; Leu WM; Lee YH; Chiou SJ; Hu NT; Chen CW
    Gene; 1990 Jan; 86(1):123-8. PubMed ID: 2107124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient method for the overexpression and purification of active tyrosinase from Streptomyces castaneoglobisporus.
    Kohashi PY; Kumagai T; Matoba Y; Yamamoto A; Maruyama M; Sugiyama M
    Protein Expr Purif; 2004 Apr; 34(2):202-7. PubMed ID: 15003252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation parameters for the reconstitution of apotyrosinase by copper.
    Wigfield DC; Goltz DM
    Biochem Cell Biol; 1993; 71(1-2):96-8. PubMed ID: 8329182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial tyrosinases.
    Claus H; Decker H
    Syst Appl Microbiol; 2006 Jan; 29(1):3-14. PubMed ID: 16423650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular and intracellular polyphenol oxidases cause opposite effects on sensitivity of Streptomyces to phenolics: a case of double-edged sword.
    Yang HY; Chen CW
    PLoS One; 2009 Oct; 4(10):e7462. PubMed ID: 19826489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of mutants defective in melanogenesis and a gene for tyrosinase of Streptomyces griseus.
    Endo K; Kamo K; Hosono K; Beppu T; Ueda K
    J Antibiot (Tokyo); 2001 Oct; 54(10):789-96. PubMed ID: 11776433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation Mechanism of the Streptomyces Tyrosinase Assisted by the Caddie Protein.
    Matoba Y; Kihara S; Muraki Y; Bando N; Yoshitsu H; Kuroda T; Sakaguchi M; Kayama K; Tai H; Hirota S; Ogura T; Sugiyama M
    Biochemistry; 2017 Oct; 56(41):5593-5603. PubMed ID: 28902505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pH dependence of the reconstitution reaction of apotyrosinase: the question of Cu(I) versus Cu(II).
    Wigfield DC; Goltz DM
    Biochem Cell Biol; 1990 Mar; 68(3):648-50. PubMed ID: 2115788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and identification of a novel tyrosinase and its overexpression in Streptomyces kathirae SC-1 for enhancing melanin production.
    Guo J; Rao Z; Yang T; Man Z; Xu M; Zhang X; Yang ST
    FEMS Microbiol Lett; 2015 Apr; 362(8):fnv041. PubMed ID: 25761752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the promoter region of the melanin locus from Streptomyces antibioticus.
    Leu WM; Wu SY; Lin JJ; Lo SJ; Lee YH
    Gene; 1989 Dec; 84(2):267-77. PubMed ID: 2693212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regioselective hydroxylation of trans-resveratrol via inhibition of tyrosinase from Streptomyces avermitilis MA4680.
    Lee N; Kim EJ; Kim BG
    ACS Chem Biol; 2012 Oct; 7(10):1687-92. PubMed ID: 22769580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of copper-depleted and copper-bound fungal pro-tyrosinase: insights into endogenous cysteine-dependent copper incorporation.
    Fujieda N; Yabuta S; Ikeda T; Oyama T; Muraki N; Kurisu G; Itoh S
    J Biol Chem; 2013 Jul; 288(30):22128-40. PubMed ID: 23749993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.