These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 1400532)

  • 21. Osteonal lamellae elementary units: lamellar microstructure, curvature and mechanical properties.
    Faingold A; Cohen SR; Reznikov N; Wagner HD
    Acta Biomater; 2013 Apr; 9(4):5956-62. PubMed ID: 23220032
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compact bone: numerical simulation of mechanical characteristics.
    Crolet JM; Aoubiza B; Meunier A
    J Biomech; 1993 Jun; 26(6):677-87. PubMed ID: 8390470
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comments on 'compact bone: numerical simulation of mechanical characteristics'.
    Zhang N; Fan XJ
    J Biomech; 1996 Dec; 29(12):1673-8. PubMed ID: 8945671
    [No Abstract]   [Full Text] [Related]  

  • 24. The effect of Haversian remodeling on the tensile properties of human cortical bone.
    Vincentelli R; Grigorov M
    J Biomech; 1985; 18(3):201-7. PubMed ID: 3997904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A first estimation of prestress in so-called circularly fibered osteonic lamellae.
    Ascenzi MG
    J Biomech; 1999 Sep; 32(9):935-42. PubMed ID: 10460130
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of remodeling on the elastic properties of bone.
    Katz JL; Yoon HS; Lipson S; Maharidge R; Meunier A; Christel P
    Calcif Tissue Int; 1984; 36 Suppl 1():S31-6. PubMed ID: 6430520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The anisotropic Young's modulus of equine secondary osteones and interstitial bone determined by nanoindentation.
    Rho JY; Currey JD; Zioupos P; Pharr GM
    J Exp Biol; 2001 May; 204(Pt 10):1775-81. PubMed ID: 11316498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of cortical bone elastic constants by a two-level micromechanical model using a generalized self-consistent method.
    Dong XN; Guo XE
    J Biomech Eng; 2006 Jun; 128(3):309-16. PubMed ID: 16706580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties.
    Martin RB; Boardman DL
    J Biomech; 1993 Sep; 26(9):1047-54. PubMed ID: 8408087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Elastic Properties of Human Osteon and Osteonal Lamella Computed by a Bidirectional Micromechanical Model and Validated by Nanoindentation.
    Korsa R; Lukes J; Sepitka J; Mares T
    J Biomech Eng; 2015 Aug; 137(8):081002. PubMed ID: 25901781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physically based 3D finite element model of a single mineralized collagen microfibril.
    Hambli R; Barkaoui A
    J Theor Biol; 2012 May; 301():28-41. PubMed ID: 22365909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simple constitutive model for a cortical bone.
    Krajcinovic D; Trafimow J; Sumarac D
    J Biomech; 1987; 20(8):779-84. PubMed ID: 3654677
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Collagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparison of two methods.
    Martin RB; Lau ST; Mathews PV; Gibson VA; Stover SM
    J Biomech; 1996 Dec; 29(12):1515-21. PubMed ID: 8945649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intracortical stiffness of mid-diaphysis femur bovine bone: lacunar-canalicular based homogenization numerical solutions and microhardness measurements.
    Hage IS; Hamade RF
    J Mater Sci Mater Med; 2017 Sep; 28(9):135. PubMed ID: 28762142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new numerical concept for modeling hydroxyapatite in human cortical bone.
    Crolet JM; Racila M; Mahraoui R; Meunier A
    Comput Methods Biomech Biomed Engin; 2005 Apr; 8(2):139-43. PubMed ID: 16154877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shaping the micromechanical behavior of multi-phase composites for bone tissue engineering.
    Ranganathan SI; Yoon DM; Henslee AM; Nair MB; Smid C; Kasper FK; Tasciotti E; Mikos AG; Decuzzi P; Ferrari M
    Acta Biomater; 2010 Sep; 6(9):3448-56. PubMed ID: 20346422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A linear piezoelectric model for characterizing stress generated potentials in bone.
    Korostoff E
    J Biomech; 1979; 12(5):335-47. PubMed ID: 447753
    [No Abstract]   [Full Text] [Related]  

  • 38. An elastic compound tube model for a single osteon.
    Braidotti P; Branca FP; Sciubba E; Stagni L
    J Biomech; 1995 Apr; 28(4):439-44. PubMed ID: 7738052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial orientation in bone samples and Young's modulus.
    Geraets WG; van Ruijven LJ; Verheij JG; van der Stelt PF; van Eijden TM
    J Biomech; 2008 Jul; 41(10):2206-10. PubMed ID: 18539283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Arguments from a multiscale approach.
    Hellmich C; Ulm FJ; Dormieux L
    Biomech Model Mechanobiol; 2004 Jun; 2(4):219-38. PubMed ID: 15054639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.