These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 1400535)
1. Theoretical analysis of pressure pulse propagation in arterial vessels. Belardinelli E; Cavalcanti S J Biomech; 1992 Nov; 25(11):1337-49. PubMed ID: 1400535 [TBL] [Abstract][Full Text] [Related]
2. A new nonlinear two-dimensional model of blood motion in tapered and elastic vessels. Belardinelli E; Cavalcanti S Comput Biol Med; 1991; 21(1-2):1-13. PubMed ID: 2044356 [TBL] [Abstract][Full Text] [Related]
3. Numerical evaluation of blood viscosity affecting pulse wave propagation in a fluid-structure interaction model. He F; Hua L; Gao LJ Biomed Tech (Berl); 2015 Feb; 60(1):11-5. PubMed ID: 25720033 [TBL] [Abstract][Full Text] [Related]
4. Linear and nonlinear one-dimensional models of pulse wave transmission at high Womersley numbers. Reuderink PJ; Hoogstraten HW; Sipkema P; Hillen B; Westerhof N J Biomech; 1989; 22(8-9):819-27. PubMed ID: 2613717 [TBL] [Abstract][Full Text] [Related]
5. Wave propagation in a viscous fluid contained in an orthotropic elastic tube. Mirsky I Biophys J; 1967 Mar; 7(2):165-86. PubMed ID: 6048869 [TBL] [Abstract][Full Text] [Related]
6. Wave propagation through a viscous fluid-filled elastic tube under initial pressure: theoretical and biophysical model. Žikić D; Žikić K Eur Biophys J; 2022 Jul; 51(4-5):365-374. PubMed ID: 35618857 [TBL] [Abstract][Full Text] [Related]
7. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness. Ikenaga Y; Nishi S; Komagata Y; Saito M; Lagrée PY; Asada T; Matsukawa M IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2381-8. PubMed ID: 24158293 [TBL] [Abstract][Full Text] [Related]
8. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results. Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422 [TBL] [Abstract][Full Text] [Related]
9. Wall stress and deformation analysis in a numerical model of pulse wave propagation. He F; Hua L; Gao L Biomed Mater Eng; 2015; 26 Suppl 1():S527-32. PubMed ID: 26406044 [TBL] [Abstract][Full Text] [Related]
10. Nonlinear separation of forward and backward running waves in elastic conduits. Stergiopulos N; Tardy Y; Meister JJ J Biomech; 1993 Feb; 26(2):201-9. PubMed ID: 8429061 [TBL] [Abstract][Full Text] [Related]
11. Theoretical and computational investigations of nonlinear wave propagations in arteries. (I)--A theoretical model of nonlinear pulse wave propagations. Wu SG; Lee GC Sci China B; 1989 Jun; 32(6):711-28. PubMed ID: 2775461 [TBL] [Abstract][Full Text] [Related]
12. Derivation of closed-form expression for the cerebral circulation models. Helal MA Comput Biol Med; 1994 Mar; 24(2):103-18. PubMed ID: 8026172 [TBL] [Abstract][Full Text] [Related]
13. Effect of initial stresses on the wave propagation in arteries. Misra JC; Choudhury KR J Math Biol; 1983; 18(1):53-67. PubMed ID: 6631263 [TBL] [Abstract][Full Text] [Related]
14. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels. Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750 [TBL] [Abstract][Full Text] [Related]
15. A non-Newtonian fluid model for blood flow through arteries under stenotic conditions. Misra JC; Patra MK; Misra SC J Biomech; 1993 Sep; 26(9):1129-41. PubMed ID: 8408094 [TBL] [Abstract][Full Text] [Related]
16. The relation between arterial viscoelasticity and wave propagation in the canine femoral artery in vivo. Milnor WR; Bertram CD Circ Res; 1978 Dec; 43(6):870-9. PubMed ID: 709749 [TBL] [Abstract][Full Text] [Related]
17. [A mathematical model of hemodynamic processes for distal pulse wave formation]. Fedotov AA Biofizika; 2015; 60(2):343-7. PubMed ID: 26016031 [TBL] [Abstract][Full Text] [Related]
18. An anatomically detailed arterial network model for one-dimensional computational hemodynamics. Blanco PJ; Watanabe SM; Passos MA; Lemos PA; Feijóo RA IEEE Trans Biomed Eng; 2015 Feb; 62(2):736-53. PubMed ID: 25347874 [TBL] [Abstract][Full Text] [Related]
19. An experimental comparison of different methods of measuring wave propagation in viscoelastic tubes. Ursino M; Artioli E; Gallerani M J Biomech; 1994 Jul; 27(7):979-90. PubMed ID: 8063848 [TBL] [Abstract][Full Text] [Related]
20. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow. Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]