BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 14005533)

  • 1. Interaction of mercury with human erythrocytes.
    WEED R; EBER J; ROTHSTEIN A
    J Gen Physiol; 1962 Jan; 45(3):395-410. PubMed ID: 14005533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A proton nuclear magnetic resonance study of the interaction of mercury with intact human erythrocytes.
    Rabenstein DL; Isab AA
    Biochim Biophys Acta; 1982 Dec; 721(4):374-84. PubMed ID: 7159599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered sulfhydryl reactivity of hemoglobins and red blood cell membranes in congenital Heinz body hemolytic anemia.
    Jacob HS; Brain MC; Dacie JV
    J Clin Invest; 1968 Dec; 47(12):2664-77. PubMed ID: 5725279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Mercury on Membrane Proteins, Anionic Transport and Cell Morphology in Human Erythrocytes.
    Notariale R; Längst E; Perrone P; Crettaz D; Prudent M; Manna C
    Cell Physiol Biochem; 2022 Sep; 56(5):500-513. PubMed ID: 36126286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LOCALIZATION OF ERYTHROCYTE MEMBRANE SULFHYDRYL GROUPS ESSENTIAL FOR GLUCOSE TRANSPORT.
    VANSTEVENINCK J; WEED RI; ROTHSTEIN A
    J Gen Physiol; 1965 Mar; 48(4):617-32. PubMed ID: 14324978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Use of a Mercury Biosensor to Evaluate the Bioavailability of Mercury-Thiol Complexes and Mechanisms of Mercury Uptake in Bacteria.
    Ndu U; Barkay T; Mason RP; Traore Schartup A; Al-Farawati R; Liu J; Reinfelder JR
    PLoS One; 2015; 10(9):e0138333. PubMed ID: 26371471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria.
    Ndu U; Barkay T; Schartup AT; Mason RP; Reinfelder JR
    Biodegradation; 2016 Feb; 27(1):29-36. PubMed ID: 26693726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfhydryl groups and the structure of hemoglobin.
    RIGGS AF; WOLBACH RA
    J Gen Physiol; 1956 Mar; 39(4):585-605. PubMed ID: 13295556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A MANOMETRIC DETERMINATION OF SULFHYDRYL GROUPS AND ITS APPLICATION TO PROTEINS IN NATIVE AND DENATURED STATES.
    HOTCHKISS RD
    Biochem Z; 1963; 338():848-53. PubMed ID: 14087347
    [No Abstract]   [Full Text] [Related]  

  • 10. Enzymatic oxidation of mercury vapor by erythrocytes.
    Halbach S; Clarkson TW
    Biochim Biophys Acta; 1978 Apr; 523(2):522-31. PubMed ID: 656439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supplementation with vitamin C, vitamin E or beta-carotene influences osmotic fragility and oxidative damage of erythrocytes of zinc-deficient rats.
    Kraus A; Roth HP; Kirchgessner M
    J Nutr; 1997 Jul; 127(7):1290-6. PubMed ID: 9202082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood and urine mercury levels in adult amalgam patients of a randomized controlled trial: interaction of Hg species in erythrocytes.
    Halbach S; Vogt S; Köhler W; Felgenhauer N; Welzl G; Kremers L; Zilker T; Melchart D
    Environ Res; 2008 May; 107(1):69-78. PubMed ID: 17767927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury chloride toxicity in human erythrocytes: enhanced generation of ROS and RNS, hemoglobin oxidation, impaired antioxidant power, and inhibition of plasma membrane redox system.
    Ahmad S; Mahmood R
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5645-5657. PubMed ID: 30612358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfhydryl groups in the red cells of normal and glucose-6-phosphate dehydrogenase deficient subjects.
    Szeinberg A; Clejan L
    Isr J Med Sci; 1965 Jul; 1(4):840-2. PubMed ID: 5856127
    [No Abstract]   [Full Text] [Related]  

  • 15. Consequences of thimerosal on human erythrocyte hemoglobin: Assessing functional and structural protein changes induced by an organic mercury compound.
    Sales MVS; da Silva Filho RC; Silva MM; Rocha JL; Freire RO; de L Tanabe EL; Silva ECO; Fonseca EJS; Figueiredo IM; Rocha U; Santos JCC; Leite ACR
    J Trace Elem Med Biol; 2022 May; 71():126928. PubMed ID: 35032836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Insights into Mercury Effects on Hemoglobin and Membrane Proteins in Human Erythrocytes.
    Piscopo M; Notariale R; Tortora F; Lettieri G; Palumbo G; Manna C
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32707650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutathione level after long-term occupational elemental mercury exposure.
    Kobal AB; Prezelj M; Horvat M; Krsnik M; Gibicar D; Osredkar J
    Environ Res; 2008 May; 107(1):115-23. PubMed ID: 17706633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red blood cells as a physiological source of glutathione for extracellular fluids.
    Giustarini D; Milzani A; Dalle-Donne I; Rossi R
    Blood Cells Mol Dis; 2008; 40(2):174-9. PubMed ID: 17964197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of sulfhydryl compounds on the accumulation, removal and cytotoxicity of inorganic mercury by primary cultures of rat renal cortical epithelial cells.
    Endo T; Sakata M
    Pharmacol Toxicol; 1995 Mar; 76(3):190-5. PubMed ID: 7617544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of thiols, zinc, and redox conditions on Hg uptake in Shewanella oneidensis.
    Szczuka A; Morel FM; Schaefer JK
    Environ Sci Technol; 2015 Jun; 49(12):7432-8. PubMed ID: 25984982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.