These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 1400630)

  • 1. Expression of tau protein in non-neuronal cells: microtubule binding and stabilization.
    Lee G; Rook SL
    J Cell Sci; 1992 Jun; 102 ( Pt 2)():227-37. PubMed ID: 1400630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular phosphorylation of tau by GSK-3 beta influences tau binding to microtubules and microtubule organisation.
    Wagner U; Utton M; Gallo JM; Miller CC
    J Cell Sci; 1996 Jun; 109 ( Pt 6)():1537-43. PubMed ID: 8799840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and phosphorylation of a three-repeat isoform of tau in transfected non-neuronal cells.
    Gallo JM; Hanger DP; Twist EC; Kosik KS; Anderton BH
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):399-404. PubMed ID: 1530572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domains of tau protein and interactions with microtubules.
    Gustke N; Trinczek B; Biernat J; Mandelkow EM; Mandelkow E
    Biochemistry; 1994 Aug; 33(32):9511-22. PubMed ID: 8068626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 'jaws' model of tau-microtubule interaction examined in CHO cells.
    Preuss U; Biernat J; Mandelkow EM; Mandelkow E
    J Cell Sci; 1997 Mar; 110 ( Pt 6)():789-800. PubMed ID: 9099953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable expression of heterologous microtubule-associated proteins (MAPs) in Chinese hamster ovary cells: evidence for differing roles of MAPs in microtubule organization.
    Barlow S; Gonzalez-Garay ML; West RR; Olmsted JB; Cabral F
    J Cell Biol; 1994 Aug; 126(4):1017-29. PubMed ID: 7519616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau.
    Goode BL; Feinstein SC
    J Cell Biol; 1994 Mar; 124(5):769-82. PubMed ID: 8120098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional organization of microtubule-associated protein tau. Identification of regions which affect microtubule growth, nucleation, and bundle formation in vitro.
    Brandt R; Lee G
    J Biol Chem; 1993 Feb; 268(5):3414-9. PubMed ID: 8429017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of tau protein regions required for process formation in PC12 cells.
    Léger JG; Brandt R; Lee G
    J Cell Sci; 1994 Dec; 107 ( Pt 12)():3403-12. PubMed ID: 7706394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly.
    Goode BL; Denis PE; Panda D; Radeke MJ; Miller HP; Wilson L; Feinstein SC
    Mol Biol Cell; 1997 Feb; 8(2):353-65. PubMed ID: 9190213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MARK4 is a novel microtubule-associated proteins/microtubule affinity-regulating kinase that binds to the cellular microtubule network and to centrosomes.
    Trinczek B; Brajenovic M; Ebneth A; Drewes G
    J Biol Chem; 2004 Feb; 279(7):5915-23. PubMed ID: 14594945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PTL-1, a microtubule-associated protein with tau-like repeats from the nematode Caenorhabditis elegans.
    Goedert M; Baur CP; Ahringer J; Jakes R; Hasegawa M; Spillantini MG; Smith MJ; Hill F
    J Cell Sci; 1996 Nov; 109 ( Pt 11)():2661-72. PubMed ID: 8937984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtubule bundling by tau proteins in vivo: analysis of functional domains.
    Kanai Y; Chen J; Hirokawa N
    EMBO J; 1992 Nov; 11(11):3953-61. PubMed ID: 1396588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased microtubule stability and alpha tubulin acetylation in cells transfected with microtubule-associated proteins MAP1B, MAP2 or tau.
    Takemura R; Okabe S; Umeyama T; Kanai Y; Cowan NJ; Hirokawa N
    J Cell Sci; 1992 Dec; 103 ( Pt 4)():953-64. PubMed ID: 1487506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of neuronal microtubule dynamics by tau: Implications for tauopathies.
    Venkatramani A; Panda D
    Int J Biol Macromol; 2019 Jul; 133():473-483. PubMed ID: 31004638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of tau is regulated by PKN.
    Taniguchi T; Kawamata T; Mukai H; Hasegawa H; Isagawa T; Yasuda M; Hashimoto T; Terashima A; Nakai M; Mori H; Ono Y; Tanaka C
    J Biol Chem; 2001 Mar; 276(13):10025-31. PubMed ID: 11104762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations in tau reduce its microtubule binding properties in intact cells and affect its phosphorylation.
    Dayanandan R; Van Slegtenhorst M; Mack TG; Ko L; Yen SH; Leroy K; Brion JP; Anderton BH; Hutton M; Lovestone S
    FEBS Lett; 1999 Mar; 446(2-3):228-32. PubMed ID: 10100846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competition for microtubule-binding with dual expression of tau missense and splice isoforms.
    Lu M; Kosik KS
    Mol Biol Cell; 2001 Jan; 12(1):171-84. PubMed ID: 11160831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a new microtubule-interacting protein Mip-90.
    González M; Cambiazo V; Maccioni RB
    Eur J Cell Biol; 1995 Jun; 67(2):158-69. PubMed ID: 7664757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable expression in Chinese hamster ovary cells of mutated tau genes causing frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17).
    Matsumura N; Yamazaki T; Ihara Y
    Am J Pathol; 1999 Jun; 154(6):1649-56. PubMed ID: 10362789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.