BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 1401242)

  • 1. Pyramidal neurons of the rat cerebral cortex, immunoreactive to nicotinic acetylcholine receptors, project mainly to subcortical targets.
    Bravo H; Karten HJ
    J Comp Neurol; 1992 Jun; 320(1):62-8. PubMed ID: 1401242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human cortical neurons contain both nicotinic and muscarinic acetylcholine receptors: an immunocytochemical double-labeling study.
    Schröder H; Zilles K; Luiten PG; Strosberg AD; Aghchi A
    Synapse; 1989; 4(4):319-26. PubMed ID: 2603150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyramidal and nonpyramidal callosal cells in the striate cortex of the adult rat.
    Martínez-García F; González-Hernández T; Martínez-Millán L
    J Comp Neurol; 1994 Dec; 350(3):439-51. PubMed ID: 7533799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular localization and laminar distribution of AMPA glutamate receptor subunits mRNAs and proteins in the rat cerebral cortex.
    Conti F; Minelli A; Brecha NC
    J Comp Neurol; 1994 Dec; 350(2):241-59. PubMed ID: 7884041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: a study of cholinergic neurons and synapses.
    Houser CR; Crawford GD; Salvaterra PM; Vaughn JE
    J Comp Neurol; 1985 Apr; 234(1):17-34. PubMed ID: 3980786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholecystokinin innervation of monkey prefrontal cortex: an immunohistochemical study.
    Oeth KM; Lewis DA
    J Comp Neurol; 1990 Nov; 301(1):123-37. PubMed ID: 1706355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunohistochemical study of glutaminase-containing neurons in the cerebral cortex and thalamus of the rat.
    Kaneko T; Mizuno N
    J Comp Neurol; 1988 Jan; 267(4):590-602. PubMed ID: 2450108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maturation of rat visual cortex: IV. The generation, migration, morphogenesis, and connectivity of atypically oriented pyramidal neurons.
    Miller MW
    J Comp Neurol; 1988 Aug; 274(3):387-405. PubMed ID: 2464619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connectional distinction between callosal and subcortically projecting cortical neurons is determined prior to axon extension.
    Koester SE; O'Leary DD
    Dev Biol; 1993 Nov; 160(1):1-14. PubMed ID: 8224528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneity of layer II neurons in human entorhinal cortex.
    Beall MJ; Lewis DA
    J Comp Neurol; 1992 Jul; 321(2):241-66. PubMed ID: 1500542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological differentiation of distinct neuronal classes in embryonic turtle cerebral cortex.
    Blanton MG; Kriegstein AR
    J Comp Neurol; 1991 Aug; 310(4):558-70. PubMed ID: 1719040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective neurofilament (SMI-32, FNP-7 and N200) expression in subpopulations of layer V pyramidal neurons in vivo and in vitro.
    Voelker CC; Garin N; Taylor JS; Gähwiler BH; Hornung JP; Molnár Z
    Cereb Cortex; 2004 Nov; 14(11):1276-86. PubMed ID: 15166101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of nicotinic and muscarinic receptors in the endogenous cholinergic modulation of the balance between excitation and inhibition in the young rat visual cortex.
    Lucas-Meunier E; Monier C; Amar M; Baux G; Frégnac Y; Fossier P
    Cereb Cortex; 2009 Oct; 19(10):2411-27. PubMed ID: 19176636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of nicotinic receptors on cultured cortical neurons using anti-idiotypic antibodies and ligand binding.
    Lippiello PM; Fernandes KG; Langone JJ; Bjercke RJ
    J Pharmacol Exp Ther; 1991 Jun; 257(3):1216-24. PubMed ID: 2046025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer's disease: II. Primary and secondary visual cortex.
    Hof PR; Morrison JH
    J Comp Neurol; 1990 Nov; 301(1):55-64. PubMed ID: 1706358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redistribution of CB1 cannabinoid receptors during evolution of cholinergic basal forebrain territories and their cortical projection areas: a comparison between the gray mouse lemur (Microcebus murinus, primates) and rat.
    Harkany T; Dobszay MB; Cayetanot F; Härtig W; Siegemund T; Aujard F; Mackie K
    Neuroscience; 2005; 135(2):595-609. PubMed ID: 16129564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mouse brain potassium channel beta1 subunit mRNA: cloning and distribution during development.
    Butler DM; Ono JK; Chang T; McCaman RE; Barish ME
    J Neurobiol; 1998 Feb; 34(2):135-50. PubMed ID: 9468385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical localization of dopamine D4 receptors in the rat brain--immunocytochemical study.
    Wedzony K; Chocyk A; Maćkowiak M; Fijał K; Czyrak A
    J Physiol Pharmacol; 2000 Jun; 51(2):205-21. PubMed ID: 10898094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of alpha5 nicotinic acetylcholine receptor subunit mRNA during hippocampal and cortical development.
    Winzer-Serhan UH; Leslie FM
    J Comp Neurol; 2005 Jan; 481(1):19-30. PubMed ID: 15558717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Information processing within the motor cortex. II. Intracortical connections between neurons receiving somatosensory cortical input and motor output neurons of the cortex.
    Kaneko T; Caria MA; Asanuma H
    J Comp Neurol; 1994 Jul; 345(2):172-84. PubMed ID: 7929898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.