These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 1401263)

  • 1. The human transient subpial granular layer: an optical, immunohistochemical, and ultrastructural analysis.
    Gadisseux JF; Goffinet AM; Lyon G; Evrard P
    J Comp Neurol; 1992 Oct; 324(1):94-114. PubMed ID: 1401263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex.
    Meyer G; Soria JM; Martínez-Galán JR; Martín-Clemente B; Fairén A
    J Comp Neurol; 1998 Aug; 397(4):493-518. PubMed ID: 9699912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental changes in layer I of the human neocortex during prenatal life: a DiI-tracing and AChE and NADPH-d histochemistry study.
    Meyer G; González-Hernández T
    J Comp Neurol; 1993 Dec; 338(3):317-36. PubMed ID: 8113444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prenatal development of fibrous (white matter), protoplasmic (gray matter), and layer I astrocytes in the human cerebral cortex: a Golgi study.
    Marín-Padilla M
    J Comp Neurol; 1995 Jul; 357(4):554-72. PubMed ID: 7545703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fiber systems in the olfactory bulb and cortex: a study in adult and developing rats, using the timm method with the light and electron microscope.
    Friedman B; Price JL
    J Comp Neurol; 1984 Feb; 223(1):88-109. PubMed ID: 6200515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal production of fibronectin in the cerebral cortex during migration and layer formation is unique to specific cortical domains.
    Sheppard AM; Brunstrom JE; Thornton TN; Gerfen RW; Broekelmann TJ; McDonald JA; Pearlman AL
    Dev Biol; 1995 Dec; 172(2):504-18. PubMed ID: 8612967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical radial glial cells in human fetuses: depth-correlated transformation into astrocytes.
    deAzevedo LC; Fallet C; Moura-Neto V; Daumas-Duport C; Hedin-Pereira C; Lent R
    J Neurobiol; 2003 Jun; 55(3):288-98. PubMed ID: 12717699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructure of neuronal cell bodies in the lateral cortex of Lacerta galloti.
    Garcia Verdugo JM; Molla Palleja R; Lopez Garcia C
    J Hirnforsch; 1984; 25(2):197-203. PubMed ID: 6736635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain.
    Levitt P; Rakic P
    J Comp Neurol; 1980 Oct; 193(3):815-40. PubMed ID: 7002963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructure of neuronal cell bodies in the medial cortex of Lacerta galloti.
    Garcia Verdugo JM; Berbel Navarro P; Regidor Garcia J; Lopez Garcia C
    J Hirnforsch; 1984; 25(2):187-96. PubMed ID: 6736634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptophysin immunohistochemistry reveals inside-out pattern of early synaptogenesis in ferret cerebral cortex.
    Voigt T; De Lima AD; Beckmann M
    J Comp Neurol; 1993 Apr; 330(1):48-64. PubMed ID: 8468403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of neuronal and glial polypeptides during histogenesis of the human cerebellar cortex including observations on the dentate nucleus.
    Yachnis AT; Rorke LB; Lee VM; Trojanowski JQ
    J Comp Neurol; 1993 Aug; 334(3):356-69. PubMed ID: 7690783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prenatal gliogenesis in the developing cerebrum of the mouse.
    Choi BH
    Glia; 1988; 1(5):308-16. PubMed ID: 2976394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mature astrocytes transform into transitional radial glia within adult mouse neocortex that supports directed migration of transplanted immature neurons.
    Leavitt BR; Hernit-Grant CS; Macklis JD
    Exp Neurol; 1999 May; 157(1):43-57. PubMed ID: 10222107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Subpial Granular Layer and Transient Versus Persisting Cajal-Retzius Neurons of the Fetal Human Cortex.
    Meyer G; González-Gómez M
    Cereb Cortex; 2018 Jun; 28(6):2043-2058. PubMed ID: 28472243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Derivation of cerebellar Golgi neurons from the external granular layer: evidence from explantation of external granule cells in vivo.
    Hausmann B; Mangold U; Sievers J; Berry M
    J Comp Neurol; 1985 Feb; 232(4):511-22. PubMed ID: 3920289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc-rich transient vertical modules in the rat retrosplenial cortex during postnatal development.
    Miró-Bernié N; Ichinohe N; Pérez-Clausell J; Rockland KS
    Neuroscience; 2006; 138(2):523-35. PubMed ID: 16426767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radial organization of the hippocampal dentate gyrus: a Golgi, ultrastructural, and immunocytochemical analysis in the developing rhesus monkey.
    Eckenhoff MF; Rakic P
    J Comp Neurol; 1984 Feb; 223(1):1-21. PubMed ID: 6707248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-binding proteins in the human developing brain.
    Ulfig N
    Adv Anat Embryol Cell Biol; 2002; 165():III-IX, 1-92. PubMed ID: 12236093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of layer I of the human cerebral cortex after midgestation: architectonic findings, immunocytochemical identification of neurons and glia, and in situ labeling of apoptotic cells.
    Spreafico R; Arcelli P; Frassoni C; Canetti P; Giaccone G; Rizzuti T; Mastrangelo M; Bentivoglio M
    J Comp Neurol; 1999 Jul; 410(1):126-42. PubMed ID: 10397400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.