BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 1401269)

  • 21. Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus.
    Saper CB
    J Comp Neurol; 1984 Jan; 222(3):313-42. PubMed ID: 6699210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extrinsic and intrinsic fiber connections of the telencephalon in a teleost, Sebastiscus marmoratus.
    Murakami T; Morita Y; Ito H
    J Comp Neurol; 1983 May; 216(2):115-31. PubMed ID: 6863598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organization of retinal axons within the optic nerve, optic chiasm, and the innervation of multiple central nervous system targets Rana pipiens.
    Montgomery NM; Tyler C; Fite KV
    J Comp Neurol; 1998 Dec; 402(2):222-37. PubMed ID: 9845245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Central olfactory connections in the macaque monkey.
    Carmichael ST; Clugnet MC; Price JL
    J Comp Neurol; 1994 Aug; 346(3):403-34. PubMed ID: 7527806
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Connections of the corticomedial amygdala in the golden hamster. I. Efferents of the "vomeronasal amygdala".
    Kevetter GA; Winans SS
    J Comp Neurol; 1981 Mar; 197(1):81-98. PubMed ID: 6164702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Morphology and axonal projection pattern of neurons in the telencephalon of the fire-bellied toad Bombina orientalis: an anterograde, retrograde, and intracellular biocytin labeling study.
    Roth G; Mühlenbrock-Lenter S; Grunwald W; Laberge F
    J Comp Neurol; 2004 Oct; 478(1):35-61. PubMed ID: 15334648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens.
    Reh TA; Pitts E; Constantine-Paton M
    J Comp Neurol; 1983 Aug; 218(3):282-96. PubMed ID: 6604077
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb.
    Luskin MB; Price JL
    J Comp Neurol; 1983 May; 216(3):264-91. PubMed ID: 6306065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fiber trajectories of olfactory bulb efferents in the hamster.
    Devor M
    J Comp Neurol; 1976 Mar; 166(1):31-47. PubMed ID: 1262548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Retinal ganglion cell death during optic nerve regeneration in the frog Hyla moorei.
    Humphrey MF; Beazley LD
    J Comp Neurol; 1985 Jun; 236(3):382-402. PubMed ID: 2414337
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tracing of two-neuron pathways in the olfactory system by the aid of transneuronal degeneration: projections to the amygdaloid body and hippocampal formation.
    Carlsen J; De Olmos J; Heimer L
    J Comp Neurol; 1982 Jun; 208(2):196-208. PubMed ID: 6181105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative study of the tectally projecting retinal ganglion cells in the adult frog. II. Cell survival and functional recovery after optic nerve transection.
    Singman EL; Scalia F
    J Comp Neurol; 1991 May; 307(3):351-69. PubMed ID: 1856327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual olfactory representation in the rat thalamus: an anatomical and electrophysiological study.
    Price JL; Slotnick BM
    J Comp Neurol; 1983 Mar; 215(1):63-77. PubMed ID: 6853766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Connections of the amygdala of the rat. IV: Corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase.
    Ottersen OP
    J Comp Neurol; 1982 Feb; 205(1):30-48. PubMed ID: 7068948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Organization of projections from olfactory epithelium to olfactory bulb in the frog, Rana pipiens.
    Duncan HJ; Nickell WT; Shipley MT; Gesteland RC
    J Comp Neurol; 1990 Sep; 299(3):299-311. PubMed ID: 2172327
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Connections of the corticomedial amygdala in the golden hamster. II. Efferents of the "olfactory amygdala".
    Kevetter GA; Winans SS
    J Comp Neurol; 1981 Mar; 197(1):99-111. PubMed ID: 6164703
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies of the early stages of optic axon regeneration in the goldfish.
    Lowenger E; Levine RL
    J Comp Neurol; 1988 May; 271(3):319-30. PubMed ID: 2454964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Further study of the outward displacement of retinal ganglion cells during optic nerve regeneration, with a note on the normal cells of Dogiel in the adult frog.
    Singman EL; Scalia F
    J Comp Neurol; 1990 Nov; 301(1):80-92. PubMed ID: 2077052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transplanted Schwann cells, not olfactory ensheathing cells, myelinate optic nerve fibres.
    Li Y; Li D; Raisman G
    Glia; 2007 Feb; 55(3):312-6. PubMed ID: 17099888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys.
    Ray JP; Price JL
    J Comp Neurol; 1993 Nov; 337(1):1-31. PubMed ID: 7506270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.