BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 1401335)

  • 1. Effects of starvation on valine and alanine transport across the intestinal mucosal border in sea bass, Dicentrarchus labrax.
    Avella M; Blaise O; Berhaut J
    J Comp Physiol B; 1992; 162(5):430-5. PubMed ID: 1401335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na(+)-dependent and Na(+)-independent transport of L-arginine and L-alanine across dog intestinal brush border membrane vesicles.
    Hatanaka T; Nabuchi Y; Ushio H
    Comp Biochem Physiol B Biochem Mol Biol; 1999 May; 123(1):105-13. PubMed ID: 10425715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased densities of intramembranous particles and cytochemically detectable cholesterol in microvilli of starved rat enterocytes.
    Waheed AA; Toyama Y; Yasuzumi F; Gupta PD
    Cell Biol Int; 1998; 22(3):177-83. PubMed ID: 9974211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-alanine absorption in human intestinal Caco-2 cells driven by the proton electrochemical gradient.
    Thwaites DT; McEwan GT; Brown CD; Hirst BH; Simmons NL
    J Membr Biol; 1994 Jun; 140(2):143-51. PubMed ID: 7932648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na-dependent D-glucose and L-alanine transport in eel intestinal brush border membrane vesicles.
    Storelli C; Vilella S; Cassano G
    Am J Physiol; 1986 Sep; 251(3 Pt 2):R463-9. PubMed ID: 3752280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine.
    Curran PF; Schultz SG; Chez RA; Fuisz RE
    J Gen Physiol; 1967 May; 50(5):1261-86. PubMed ID: 6033585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Starvation-induced increase of hepatic alanine uptake is related to changes in sensitivity to SH-group reagents.
    Felipe A; Remesar X; Pastor-Anglada M
    Am J Physiol; 1995 Mar; 268(3 Pt 2):R598-604. PubMed ID: 7900901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na+ gradient-dependent transport of hypoxanthine by calf intestinal brush border membrane vesicles.
    Theisinger A; Grenacher B; Scharrer E
    J Comp Physiol B; 2003 Mar; 173(2):165-70. PubMed ID: 12624654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dietary protein reduction in sheep and goats: different effects on L-alanine and L-leucine transport across the brush-border membrane of jejunal enterocytes.
    Schröder B; Schöneberger M; Rodehutscord M; Pfeffer E; Breves G
    J Comp Physiol B; 2003 Aug; 173(6):511-8. PubMed ID: 12811487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small intestinal sugar and amino acid transport in semistarvation.
    Groseclose R; Hopfer U
    Membr Biochem; 1978; 2(1):135-48. PubMed ID: 45778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How many Na+-dependent carriers for L-alanine and L-proline in the eel intestine? Studies with brush-border membrane vesicles.
    Vilella S; Cassano G; Storelli C
    Biochim Biophys Acta; 1989 Sep; 984(2):188-92. PubMed ID: 2765548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolated membrane vesicles as tools for analysis of epithelial transport.
    Hopfer U
    Am J Physiol; 1977 Dec; 233(6):E445-9. PubMed ID: 596437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple pathways for L-methionine transport in brush-border membrane vesicles from chicken jejunum.
    Soriano-García JF; Torras-Llort M; Ferrer R; Moreto M
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):527-39. PubMed ID: 9575301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of the inhibitory effect of imipramine on the Na+-dependent transport of L-glutamic acid in rat intestinal brush-border membrane.
    Sugawara M; Kato M; Kobayashi M; Iseki K; Miyazaki K
    Biochim Biophys Acta; 1998 Mar; 1370(2):252-8. PubMed ID: 9545575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Starvation-induced changes in the autoradiographic localisation of valine uptake by rat small intestine.
    Thompson CS; Debnam ES
    Experientia; 1986 Aug; 42(8):945-8. PubMed ID: 3743720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intestinal brush border transport mechanism of 5-fluorouracil in rats.
    Yuasa H; Matsuhisa E; Watanabe J
    Biol Pharm Bull; 1996 Jan; 19(1):94-9. PubMed ID: 8820919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alanine influx across serosal border of Testudo graeca intestine.
    Nassar CF; Khuri RN; Hajjar JJ
    Biochim Biophys Acta; 1980; 595(1):121-5. PubMed ID: 7349874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the proton electrochemical gradient in the transepithelial absorption of amino acids by human intestinal Caco-2 cell monolayers.
    Thwaites DT; McEwan GT; Simmons NL
    J Membr Biol; 1995 Jun; 145(3):245-56. PubMed ID: 7563025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of Na+-coupled solute transport by calcium in brush border membrane vesicles.
    Fondacaro JD; Madden TB
    Life Sci; 1984 Sep; 35(13):1431-8. PubMed ID: 6482664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal epithelial cells.
    Hopfer U; Sigrist-Nelson K; Ammann E; Murer H
    J Cell Physiol; 1976 Dec; 89(4):805-10. PubMed ID: 137908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.