These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 1401523)

  • 1. Analyzing reverse middle-ear transmission: noninvasive Gedankenexperiments.
    Shera CA; Zweig G
    J Acoust Soc Am; 1992 Sep; 92(3):1371-81. PubMed ID: 1401523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of forward and reverse middle-ear transmission applied to otoacoustic emissions in infant and adult ears.
    Keefe DH; Abdala C
    J Acoust Soc Am; 2007 Feb; 121(2):978-93. PubMed ID: 17348521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Allen-Fahey experiment extended.
    de Boer E; Nuttall AL; Hu N; Zou Y; Zheng J
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1260-6. PubMed ID: 15807015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A parametric model of the spectral periodicity of stimulus frequency otoacoustic emissions.
    Lineton B; Lutman ME
    J Acoust Soc Am; 2003 Aug; 114(2):883-95. PubMed ID: 12942970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allen-Fahey and related experiments support the predominance of cochlear slow-wave otoacoustic emissions.
    Shera CA; Tubis A; Talmadge CL; de Boer E; Fahey PF; Guinan JJ
    J Acoust Soc Am; 2007 Mar; 121(3):1564-75. PubMed ID: 17407894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the effect of suppression on the periodicity of stimulus frequency otoacoustic emissions.
    Lineton B; Lutman ME
    J Acoust Soc Am; 2003 Aug; 114(2):859-70. PubMed ID: 12942968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracochlear acoustic pressure measurements: transfer functions of the middle ear and cochlear mechanics.
    Magnan P; Dancer A; Probst R; Smurzynski J; Avan P
    Audiol Neurootol; 1999; 4(3-4):123-8. PubMed ID: 10187919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of distortion product otoacoustic emissions and hearing threshold.
    Pienkowski M; Kunov H
    J Acoust Soc Am; 2001 Apr; 109(4):1496-502. PubMed ID: 11325121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Middle ear forward and reverse transmission in gerbil.
    Dong W; Olson ES
    J Neurophysiol; 2006 May; 95(5):2951-61. PubMed ID: 16481455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cochlear compression wave: an implication of the Allen-Fahey experiment.
    Ren T; Nuttall AL
    J Acoust Soc Am; 2006 Apr; 119(4):1940-2. PubMed ID: 16642805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions.
    Moleti A; Sisto R
    J Acoust Soc Am; 2008 Mar; 123(3):1495-503. PubMed ID: 18345838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comment on "Ear Asymmetries in middle-ear, cochlear, and brainstem responses in human infants" [J. Acoust. Soc. Am. 123, 1504-1512].
    Sininger Y; Cone B
    J Acoust Soc Am; 2008 Sep; 124(3):1401-3. PubMed ID: 19045630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forward and reverse transfer functions of the middle ear based on pressure and velocity DPOAEs with implications for differential hearing diagnosis.
    Dalhoff E; Turcanu D; Gummer AW
    Hear Res; 2011 Oct; 280(1-2):86-99. PubMed ID: 21624450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of suppression on the periodicity of stimulus frequency otoacoustic emissions: experimental data.
    Lineton B; Lutman ME
    J Acoust Soc Am; 2003 Aug; 114(2):871-82. PubMed ID: 12942969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chinchilla middle ear transmission matrix model and middle-ear flexibility.
    Ravicz ME; Rosowski JJ
    J Acoust Soc Am; 2017 May; 141(5):3274. PubMed ID: 28599566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of Round-Trip Outer-Middle Ear Gain Using DPOAEs.
    Naghibolhosseini M; Long GR
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):121-138. PubMed ID: 27796594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species differences of distortion-product otoacoustic emissions: comment on "Interpretation of distortion product otoacoustic emission measurements. I. Two stimulus tones" [J. Acoust. Soc. Am. 102, 413-429 (1997)].
    Whitehead ML
    J Acoust Soc Am; 1998 May; 103(5 Pt 1):2740-2. PubMed ID: 9604365
    [No Abstract]   [Full Text] [Related]  

  • 18. A symmetry suppresses the cochlear catastrophe.
    Shera CA; Zweig G
    J Acoust Soc Am; 1991 Mar; 89(3):1276-89. PubMed ID: 2030215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse middle-ear transfer function in the guinea pig measured with cubic difference tones.
    Magnan P; Avan P; Dancer A; Smurzynski J; Probst R
    Hear Res; 1997 May; 107(1-2):41-5. PubMed ID: 9165345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral shapes of forward and reverse transfer functions between ear canal and cochlea estimated using DPOAE input/output functions.
    Keefe DH
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):249-60. PubMed ID: 11831799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.