These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1401523)

  • 21. Separating the contributions of olivocochlear and middle ear muscle reflexes in modulation of distortion product otoacoustic emission levels.
    Wolter NE; Harrison RV; James AL
    Audiol Neurootol; 2014; 19(1):41-8. PubMed ID: 24335024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distortion-product otoacoustic emissions measured at high frequencies in humans.
    Dreisbach LE; Siegel JH
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2456-69. PubMed ID: 11757935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noninvasive measurement of the cochlear traveling-wave ratio.
    Shera CA; Zweig G
    J Acoust Soc Am; 1993 Jun; 93(6):3333-52. PubMed ID: 8326061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of changes in dynamic characteristics of the middle ear on transient-evoked otoacoustic emissions.
    Spirić S; Spirić P; Vranjes D; Aleksić A
    Med Pregl; 2011; 64(9-10):439-42. PubMed ID: 22097107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distortion product otoacoustic emissions and tympanometric measurements in an adult population-based study.
    Uchida Y; Ando F; Nakata S; Ueda H; Nakashima T; Niino N; Shimokata H
    Auris Nasus Larynx; 2006 Dec; 33(4):397-401. PubMed ID: 16753276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling otoacoustic emission and hearing threshold fine structures.
    Talmadge CL; Tubis A; Long GR; Piskorski P
    J Acoust Soc Am; 1998 Sep; 104(3 Pt 1):1517-43. PubMed ID: 9745736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustic emissions from the ear: a summary of results from humans and animals.
    Zurek PM
    J Acoust Soc Am; 1985 Jul; 78(1 Pt 2):340-4. PubMed ID: 4031240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Use of acoustic distortion products in clinical diagnosis. The site of origin of otoacoustic emissions in the inner ear].
    Plinkert PK; Harris FP; Probst R
    HNO; 1993 Jul; 41(7):339-44. PubMed ID: 8376180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compensating for deviant middle ear pressure in otoacoustic emission measurements, data, and comparison to a middle ear model.
    Hof JR; de Kleine E; Avan P; Anteunis LJ; Koopmans PJ; van Dijk P
    Otol Neurotol; 2012 Jun; 33(4):504-11. PubMed ID: 22569147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Statistics of instabilities in a state space model of the human cochlea.
    Ku EM; Elliott SJ; Lineton B
    J Acoust Soc Am; 2008 Aug; 124(2):1068-79. PubMed ID: 18681597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contralateral suppression of distortion product otoacoustic emissions and the middle-ear muscle reflex in human ears.
    Sun XM
    Hear Res; 2008 Mar; 237(1-2):66-75. PubMed ID: 18258398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs.
    Shera CA; Guinan JJ
    J Acoust Soc Am; 1999 Feb; 105(2 Pt 1):782-98. PubMed ID: 9972564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous Intracochlear Pressure Measurements from Two Cochlear Locations: Propagation of Distortion Products in Gerbil.
    Dong W
    J Assoc Res Otolaryngol; 2017 Apr; 18(2):209-225. PubMed ID: 27909837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative study of distortion-product-otoacoustic-emission fine structure in human newborns and adults with normal hearing.
    Dhar S; Abdala C
    J Acoust Soc Am; 2007 Oct; 122(4):2191-202. PubMed ID: 17902855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Middle-ear phenomenology: the view from the three windows.
    Shera CA; Zweig G
    J Acoust Soc Am; 1992 Sep; 92(3):1356-70. PubMed ID: 1401522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of distortion product otoacoustic emissions to assess middle ear transducers in rhesus monkeys.
    Park JY; Coticchia JM; Clark WW; Esselman GH; Khosla S; Neely JG; Fredrickson JM
    Am J Otol; 1995 Sep; 16(5):576-90. PubMed ID: 8588662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics.
    Epp B; Verhey JL; Mauermann M
    J Acoust Soc Am; 2010 Oct; 128(4):1870-83. PubMed ID: 20968359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Suppression of stimulus frequency otoacoustic emissions.
    Brass D; Kemp DT
    J Acoust Soc Am; 1993 Feb; 93(2):920-39. PubMed ID: 8445127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.