BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 1402123)

  • 21. Aperture size to therapeutic volume relation for a multielement ultrasound system: determination of applicator adequacy for superficial hyperthermia.
    Moros EG; Myerson RJ; Straube WL
    Med Phys; 1993; 20(5):1399-409. PubMed ID: 8289722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous delivery of electron beam therapy and ultrasound hyperthermia using scanning reflectors: a feasibility study.
    Moros EG; Straube WL; Klein EE; Yousaf M; Myerson RJ
    Int J Radiat Oncol Biol Phys; 1995 Feb; 31(4):893-904. PubMed ID: 7860403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature superposition for fast computation of 3D temperature distributions during optimization and planning of interstitial ultrasound hyperthermia treatments.
    Salgaonkar VA; Prakash P; Diederich CJ
    Int J Hyperthermia; 2012; 28(3):235-49. PubMed ID: 22515345
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intramuscular Heating Characteristics of Multihour Low-Intensity Therapeutic Ultrasound.
    Rigby JH; Taggart RM; Stratton KL; Lewis GK; Draper DO
    J Athl Train; 2015 Nov; 50(11):1158-64. PubMed ID: 26509683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance of an adaptive MIMO controller for a multiple-element ultrasound hyperthermia system.
    Hartov A; Colacchio TA; Strohbehn JW; Ryan TP; Hoopes PJ
    Int J Hyperthermia; 1993; 9(4):563-79. PubMed ID: 8366306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of applicator diameter on lesion size from high temperature interstitial ultrasound thermal therapy.
    Tyréus PD; Nau WH; Diederich CJ
    Med Phys; 2003 Jul; 30(7):1855-63. PubMed ID: 12906204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The development of intracavitary ultrasonic applicators for hyperthermia: a design and experimental study.
    Diederich CJ; Hynynen K
    Med Phys; 1990; 17(4):626-34. PubMed ID: 2215407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustic power calibrations of cylindrical intracavitary ultrasound hyperthermia applicators.
    Hynynen K
    Med Phys; 1993; 20(1):129-34. PubMed ID: 8455491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal therapy of pancreatic tumours using endoluminal ultrasound: Parametric and patient-specific modelling.
    Adams MS; Scott SJ; Salgaonkar VA; Sommer G; Diederich CJ
    Int J Hyperthermia; 2016; 32(2):97-111. PubMed ID: 27097663
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An ultrasound system for local hyperthermia using scanned focused transducers.
    Dickinson RJ
    IEEE Trans Biomed Eng; 1984 Jan; 31(1):120-5. PubMed ID: 6724599
    [No Abstract]   [Full Text] [Related]  

  • 31. Small cylindrical ultrasound sources for induction of hyperthermia via body cavities or interstitial implants.
    Hynynen K; Davis KL
    Int J Hyperthermia; 1993; 9(2):263-74. PubMed ID: 8468509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermometry of interstitial hyperthermia given as an adjuvant to brachytherapy for the treatment of carcinoma of the prostate.
    Prionas SD; Kapp DS; Goffinet DR; Ben-Yosef R; Fessenden P; Bagshaw MA
    Int J Radiat Oncol Biol Phys; 1994 Jan; 28(1):151-62. PubMed ID: 8270436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temperature data analysis for 22 patients with advanced cervical carcinoma treated in Rotterdam using radiotherapy, hyperthermia and chemotherapy: a reference point is needed.
    Fatehi D; van der Zee J; van der Wal E; Van Wieringen WN; Van Rhoon GC
    Int J Hyperthermia; 2006 Jun; 22(4):353-63. PubMed ID: 16754355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain.
    Adams MS; Salgaonkar VA; Scott SJ; Sommer G; Diederich CJ
    Med Phys; 2017 Oct; 44(10):5339-5356. PubMed ID: 28681404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experience with a multitransducer ultrasound system for localized hyperthermia of deep tissues.
    Fessenden P; Lee ER; Anderson TL; Strohbehn JW; Meyer JL; Samulski TV; Marmor JB
    IEEE Trans Biomed Eng; 1984 Jan; 31(1):126-35. PubMed ID: 6724600
    [No Abstract]   [Full Text] [Related]  

  • 36. MicroPET-compatible, small animal hyperthermia ultrasound system (SAHUS) for sustainable, collimated and controlled hyperthermia of subcutaneously implanted tumours.
    Singh AK; Moros EG; Novak P; Straube W; Zeug A; Locke JE; Myerson RJ
    Int J Hyperthermia; 2004 Feb; 20(1):32-44. PubMed ID: 14612312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heating patterns of the Helios ultrasound hyperthermia system.
    Lindsley K; Stauffer PR; Sneed P; Chin R; Phillips TL; Seppi E; Shapiro E; Henderson S
    Int J Hyperthermia; 1993; 9(5):675-84. PubMed ID: 8245579
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interstitial ultrasound ablation of vertebral and paraspinal tumours: parametric and patient-specific simulations.
    Scott SJ; Salgaonkar V; Prakash P; Burdette EC; Diederich CJ
    Int J Hyperthermia; 2014 Jun; 30(4):228-44. PubMed ID: 25017322
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing ultrasound focus distributions for hyperthermia.
    Lalonde RJ; Hunt JW
    IEEE Trans Biomed Eng; 1995 Oct; 42(10):981-90. PubMed ID: 8582728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catheter induced temperature artifacts in ultrasound hyperthermia.
    Waterman FM; Nerlinger RE; Leeper JB
    Int J Hyperthermia; 1990; 6(2):371-81. PubMed ID: 2324576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.