These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 1402137)

  • 1. Quantitative determination of SAR profiles from photographs of the light-emitting diode matrix.
    Schneider CJ; de Leeuw AA; van Dijk JD
    Int J Hyperthermia; 1992; 8(5):609-19. PubMed ID: 1402137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quality assurance in various radiative hyperthermia systems applying a phantom with LED matrix.
    Schneider CJ; van Dijk JD; De Leeuw AA; Wust P; Baumhoer W
    Int J Hyperthermia; 1994; 10(5):733-47. PubMed ID: 7806928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization by a matrix of light-emitting diodes of interference effects from a radiative four-applicator hyperthermia system.
    Schneider C; Van Dijk JD
    Int J Hyperthermia; 1991; 7(2):355-66. PubMed ID: 1880460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of six microwave antennas for hyperthermia treatment of cancer: sar results for single antennas and arrays.
    Ryan TP
    Int J Radiat Oncol Biol Phys; 1991 Jul; 21(2):403-13. PubMed ID: 2061117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and testing of SAR-visualizing phantoms for quality control in RF hyperthermia.
    Wust P; Fähling H; Jordan A; Nadobny J; Seebass M; Felix R
    Int J Hyperthermia; 1994; 10(1):127-42. PubMed ID: 8144984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The characterization of semirigid coaxial antennae for interstitial and endocavitary microwave hyperthermia].
    Erb J; Klautke G; Seegenschmiedt HM; Engelbrecht R; Schaller G; Sauer R
    Strahlenther Onkol; 1994 Nov; 170(11):654-64. PubMed ID: 7974181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for the quantitative evaluation of SAR distribution in deep regional hyperthermia.
    Baroni C; Giri MG; Meliadó G; Maluta S; Chierego G
    Int J Hyperthermia; 2001; 17(5):369-81. PubMed ID: 11587076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absorbed power deposition for various insertion depths for 915 MHz interstitial dipole antenna arrays: experiment versus theory.
    Ryan TP; Mechling JA; Strohbehn JW
    Int J Radiat Oncol Biol Phys; 1990 Aug; 19(2):377-87. PubMed ID: 2394617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific absorption rate steering by patient positioning in the 'Coaxial TEM' system: phantom investigation.
    De Leeuw AA; Mooibroek J; Lagendijk JJ
    Int J Hyperthermia; 1991; 7(4):605-11. PubMed ID: 1919155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature and SAR measurements in deep-body hyperthermia with thermocouple thermometry.
    De Leeuw AA; Crezee J; Lagendijk JJ
    Int J Hyperthermia; 1993; 9(5):685-97. PubMed ID: 8245580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional model for the 'coaxial TEM' deep-body hyperthermia applicator.
    van Putten MH; van den Berg PM
    Int J Hyperthermia; 1986; 2(3):243-52. PubMed ID: 3794420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a clinical deep-body hyperthermia system based on the 'coaxial TEM' applicator.
    De Leeuw AA; Lagendijk JJ
    Int J Hyperthermia; 1987; 3(5):413-21. PubMed ID: 3681041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward online adaptive hyperthermia treatment planning: correlation between measured and simulated specific absorption rate changes caused by phase steering in patients.
    Kok HP; Ciampa S; de Kroon-Oldenhof R; Steggerda-Carvalho EJ; van Stam G; Zum Vörde Sive Vörding PJ; Stalpers LJ; Geijsen ED; Bardati F; Bel A; Crezee J
    Int J Radiat Oncol Biol Phys; 2014 Oct; 90(2):438-45. PubMed ID: 25052560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the performance characteristics of a prototype 12-element capacitive contact flexible microstrip applicator (CFMA-12) for superficial hyperthermia.
    Lee WM; Gelvich EA; van der Baan P; Mazokhin VN; van Rhoon GC
    Int J Hyperthermia; 2004 Sep; 20(6):607-24. PubMed ID: 15370817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effectiveness of the Gaussian beam model in predicting SAR distributions from the lucite cone applicator.
    Rietveld PJ; Lumori ML; Hand JW; Prior MV; Van der Zee J; Van Rhoon GC
    Int J Hyperthermia; 1998; 14(3):293-308. PubMed ID: 9679709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical limits of SAR distributions of a four-element square array of dipole-type antennas.
    Fan CJ; Leybovich LB; Devanna WG; Kurup RG
    Med Phys; 1994 Nov; 21(11):1665-70. PubMed ID: 7891625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A coaxial microwave applicator for transurethral hyperthermia of the prostate.
    Wong TZ; Jonsson E; Hoopes PJ; Trembly BS; Heaney JA; Douple EB; Coughlin CT
    Prostate; 1993; 22(2):125-38. PubMed ID: 7681205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculated power absorption patterns for hyperthermia applicators consisting of electric dipole arrays.
    Tsai CT; Durney CH; Christensen DA
    J Microw Power; 1984 Mar; 19(1):1-13. PubMed ID: 6564154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of a passive RF field probe with fibre-optic link for measurements in liquid hyperthermia phantoms.
    Schneider CJ; Engelberts N; van Dijk JD
    Phys Med Biol; 1991 Apr; 36(4):461-74. PubMed ID: 2047396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Measures of specific absorption rate (SAR) in microwave hyperthermic oncology and the influence of the dynamic bolus on clinical practice].
    Marini P; Guiot C; Baiotto B; Gabriele P
    Radiol Med; 2001 Sep; 102(3):159-67. PubMed ID: 11677459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.