These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 14021651)

  • 21. Satellite DNA in photosynthetic bacteria.
    Suyama Y; Gibson J
    Biochem Biophys Res Commun; 1966 Aug; 24(4):549-53. PubMed ID: 5967242
    [No Abstract]   [Full Text] [Related]  

  • 22. Coupled photoreduction of ubiquinone and photooxidation of ferrocytochrome C catalyzed by chromatophores of Rhodospirillum rubrum.
    ZAUGG WS
    Proc Natl Acad Sci U S A; 1963 Jul; 50(1):100-6. PubMed ID: 14003298
    [No Abstract]   [Full Text] [Related]  

  • 23. Membranes of photosynthetic bacteria.
    Oelze J; Drews G
    Biochim Biophys Acta; 1972 Apr; 265(2):209-39. PubMed ID: 4557023
    [No Abstract]   [Full Text] [Related]  

  • 24. pH-induced changes of the infrared absorption spectra of purple bacteria.
    GOEDHEER JC; KOMEN JG; THOMAS JB
    Biochim Biophys Acta; 1956 Oct; 22(1):1-8. PubMed ID: 13373840
    [No Abstract]   [Full Text] [Related]  

  • 25. Early chemical events in photosynthesis: kinetics of oxidation of cytochromes of types c or f in cells, chloroplasts, and chromatophores.
    Chance B; DeVault D; Hildreth WW; Parson WW; Nishimura M
    Brookhaven Symp Biol; 1966; 19():115-31. PubMed ID: 5966902
    [No Abstract]   [Full Text] [Related]  

  • 26. Structure and photochemical activity of chlorophyll-containing particles from Rhodospirillum rubrum.
    FRENKEL AW; HICKMAN DD
    J Biophys Biochem Cytol; 1959 Oct; 6(2):285-90. PubMed ID: 13824882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermostability of Rhodopseudomonas viridis and Rhodospirillum rubrum chromatophores reflecting physiological conditions.
    Odahara T; Ishii N; Ooishi A; Honda S; Uedaira H; Hara M; Miyake J
    Biochim Biophys Acta; 2011 Jun; 1808(6):1645-53. PubMed ID: 21354412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature dependence of absorption and fluorescence spectra of bacteriochlorophylls in vivo and in vitro.
    Goedheer JC
    Biochim Biophys Acta; 1972 Aug; 275(2):169-76. PubMed ID: 4627554
    [No Abstract]   [Full Text] [Related]  

  • 29. Characterization of primary reactants in bacterial photosynthesis. I. Comparison of the light-induced EPR signal (g=2.0026) with that of a bacteriochlorophyll radical.
    McElroy JD; Feher G; Mauzerall DC
    Biochim Biophys Acta; 1972 May; 267(2):363-74. PubMed ID: 4339582
    [No Abstract]   [Full Text] [Related]  

  • 30. Electron paramagnetic resonance studies of ferric cytochrome c' from photosynthetic bacteria.
    Fujii S; Yoshimura T; Kamada H; Yamaguchi K; Suzuki S; Shidara S; Takakuwa S
    Biochim Biophys Acta; 1995 Sep; 1251(2):161-9. PubMed ID: 7669805
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Survey of the photosynthetic bacteria for rhodanese (thiosulfate: cyanide sulfur transferase) activity.
    Yoch DC; Lindstrom ES
    J Bacteriol; 1971 May; 106(2):700-1. PubMed ID: 5573738
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy transfer between carotenoids and bacteriochlorophyll in chromatophores of purple bacteria.
    GOEDHEER JC
    Biochim Biophys Acta; 1959 Sep; 35():1-8. PubMed ID: 13850395
    [No Abstract]   [Full Text] [Related]  

  • 33. Photosynthetic adenosine triphosphate formation and photo-reduction of diphosphopyridine nucleotide with chromatophores of Rhodospirillum rubrum.
    HORIO T; YAMASHITA J; NISHIKAWA K
    Biochim Biophys Acta; 1963 Jan; 66():37-49. PubMed ID: 13954899
    [No Abstract]   [Full Text] [Related]  

  • 34. Trace metal composition of photosynthetic bacteria.
    Kassner RJ; Kamen MD
    Biochim Biophys Acta; 1968 Jan; 153(1):270-8. PubMed ID: 4295561
    [No Abstract]   [Full Text] [Related]  

  • 35. Role of ubiquinone-10 in electron transport system of chromatophores from Rhodospirillum rubrum.
    Higuti T; Erabi T; Kakuno T; Horio T
    J Biochem; 1975 Jul; 78(1):51-6. PubMed ID: 172493
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Molecular organization of the long-wave complexes of purple photosynthesizing bacteria. Effect of pronase on the B890 complex of Chromatium minutissium and Rhodopseudomonas palustris].
    Erokhin IuE; Vasil'ev BG
    Mol Biol (Mosk); 1978; 12(4):759-65. PubMed ID: 683188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of the contribution from different energy-linked reactions to the function of a membrane potential in photosynthetic bacteria.
    Nore BF; Sakai Y; Baltscheffsky M
    Biochim Biophys Acta; 1990 Feb; 1015(2):189-94. PubMed ID: 23387095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation, characterization, and comparison of a ubiquitous pigment-protein complex consisting of a reaction center and light-harvesting bacteriochlorophyll proteins present in purple photosynthetic bacteria.
    Ueda T; Morimoto Y; Sato M; Kakuno T; Yamashita J; Horio T
    J Biochem; 1985 Dec; 98(6):1487-98. PubMed ID: 3937841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The structure of Rhodospirillum rubrum.
    HICKMAN DD; FRENKEL AW
    J Biophys Biochem Cytol; 1959 Oct; 6(2):277-84. PubMed ID: 14401694
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The sizes of the photosynthetic energy-transducing units in purple bacteria determined by single flash yield, titration by antibiotics and carotenoid absorption band shift.
    Nishimura M
    Biochim Biophys Acta; 1970 Jan; 197(1):69-77. PubMed ID: 5412035
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.