These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 14023110)

  • 1. [Action of polarizing currents on the electroretinogram as a function of the retinal adaptation].
    CORNU L
    J Physiol (Paris); 1963; 55():128-9. PubMed ID: 14023110
    [No Abstract]   [Full Text] [Related]  

  • 2. Contribution of proximal retinal neurons to b- and d-waves of frog electroretinogram under different conditions of light adaptation.
    Popova E; Kupenova P
    Vision Res; 2009 Jul; 49(15):2001-10. PubMed ID: 19463849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in implicit time of the multifocal electroretinogram response following contrast adaptation.
    Chen JC; Brown B; Schmid KL
    Curr Eye Res; 2006 Jun; 31(6):549-56. PubMed ID: 16769614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroretinography of wild-type and Cry mutant mice reveals circadian tuning of photopic and mesopic retinal responses.
    Cameron MA; Barnard AR; Hut RA; Bonnefont X; van der Horst GT; Hankins MW; Lucas RJ
    J Biol Rhythms; 2008 Dec; 23(6):489-501. PubMed ID: 19060258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effects of polarizing current on the electroretinogram. (VII) Effects on the human electroretinogram (author's transl)].
    Kawasaki K; Tanabe J; Yanagida T; Yammoto S; Yonemura D
    Nippon Ganka Gakkai Zasshi; 1978 Apr; 82(4):288-91. PubMed ID: 665457
    [No Abstract]   [Full Text] [Related]  

  • 6. Retinal adaptation responses revealed by global flash multifocal electroretinogram are dependent on the degree of myopic refractive error.
    Chen JC; Brown B; Schmid KL
    Vision Res; 2006 Oct; 46(20):3413-21. PubMed ID: 16647734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Modifications of the electroretinogram and of the internal electroretinogram of the eye of turtle under the action of a current crossing the retina].
    GONELLA J; CORNU L
    C R Seances Soc Biol Fil; 1958; 152(8-9):1254-7. PubMed ID: 13619233
    [No Abstract]   [Full Text] [Related]  

  • 8. [Changes in an electroretinogram and biochemical parameters of tear in simulated rabbit retinal ischemia].
    Gundorova RA; Ivanov AN; Tsapenko IV; Zueva MV; CHesnokova NB; Shvetsova NE; Beznos OV; Stoliarova EP; Andersen EB
    Vestn Oftalmol; 2007; 123(5):28-32. PubMed ID: 18078055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifocal electroretinogram in evaluating retinal function of diabetic macular edema after pars plana vitrectomy.
    Ma J; Wu DZ; Gao RL; Lu L; Zhang SC; Wen F; Huang SZ
    Chin Med J (Engl); 2004 May; 117(5):764-6. PubMed ID: 15161550
    [No Abstract]   [Full Text] [Related]  

  • 10. Choroideremia: variability of clinical and electrophysiological characteristics and first report of a negative electroretinogram.
    Renner AB; Kellner U; Cropp E; Preising MN; MacDonald IM; van den Hurk JA; Cremers FP; Foerster MH
    Ophthalmology; 2006 Nov; 113(11):2066.e1-10. PubMed ID: 16935340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The electroretinogram in children.
    Parness-Yossifon R; Mets MB
    Curr Opin Ophthalmol; 2008 Sep; 19(5):398-402. PubMed ID: 18772672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biphasic photoreceptor degeneration induced by light in a T17M rhodopsin mouse model of cone bystander damage.
    Krebs MP; White DA; Kaushal S
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2956-65. PubMed ID: 19136713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origins of the electroretinogram oscillatory potentials in the rabbit retina.
    Dong CJ; Agey P; Hare WA
    Vis Neurosci; 2004; 21(4):533-43. PubMed ID: 15579219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scotopic threshold response changes after vigabatrin therapy in a child without visual field defects: a new electroretinographic marker of early damage?
    Parisi P; Tommasini P; Piazza G; Manfredi M
    Neurobiol Dis; 2004 Apr; 15(3):573-9. PubMed ID: 15056465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blockade of amiloride-sensitive sodium channels alters multiple components of the mammalian electroretinogram.
    Brockway LM; Benos DJ; Keyser KT; Kraft TW
    Vis Neurosci; 2005; 22(2):143-51. PubMed ID: 15935107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abnormal multifocal electroretinogram (mfERG) in ethambutol toxicity.
    Kardon RH; Morrisey MC; Lee AG
    Semin Ophthalmol; 2006; 21(4):215-22. PubMed ID: 17182409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of macular function by focal electroretinogram and pattern electroretinogram before and after epimacular membrane surgery.
    Parisi V; Coppè AM; Gallinaro G; Stirpe M
    Retina; 2007 Mar; 27(3):312-20. PubMed ID: 17460586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ISCEV standard for clinical pattern electroretinography--2007 update.
    Holder GE; Brigell MG; Hawlina M; Meigen T; Vaegan ; Bach M;
    Doc Ophthalmol; 2007 May; 114(3):111-6. PubMed ID: 17435967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring the cone contribution to the ERG b-wave to assess function and predict anatomical rescue in RCS rats.
    Pinilla I; Lund RD; Lu B; Sauvé Y
    Vision Res; 2005 Mar; 45(5):635-41. PubMed ID: 15621180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A circadian clock regulates the process of ERG b- and d-wave dominance transition in dark-adapted zebrafish.
    Ren JQ; Li L
    Vision Res; 2004; 44(18):2147-52. PubMed ID: 15183681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.