These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 14023642)

  • 1. Bioelectric activity in long-term cultures of spinal cord tissues.
    CRAIN SM; PETERSON ER
    Science; 1963 Aug; 141(3579):427-9. PubMed ID: 14023642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. COMPLEX BIOELECTRIC ACTIVITY IN ORGANIZED TISSUE CULTURES OF SPINAL CORD (HUMAN, RAT AND CHICK).
    CRAIN SM; PETERSON ER
    J Cell Comp Physiol; 1964 Aug; 64():1-13. PubMed ID: 14200348
    [No Abstract]   [Full Text] [Related]  

  • 3. Growth of axons through a lesion in the intact CNS of fetal rat maintained in long-term culture.
    Saunders NR; Balkwill P; Knott G; Habgood MD; Møllgård K; Treherne JM; Nicholls JG
    Proc Biol Sci; 1992 Dec; 250(1329):171-80. PubMed ID: 1362987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of spontaneous bioelectric activities and strychnine sensitivity during maturation in culture of embryonic chick and rodent central nervous tissues.
    Corner MA; Crain SM
    Arch Int Pharmacodyn Ther; 1969 Dec; 182(2):404-6. PubMed ID: 5371194
    [No Abstract]   [Full Text] [Related]  

  • 5. Differential distribution of excitatory amino acid receptors on embryonic rat spinal cord neurons in culture.
    Arancio O; MacDermott AB
    J Neurophysiol; 1991 Apr; 65(4):899-913. PubMed ID: 1675674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity of monoclonal antibody N1 for cell surfaces of mouse central nervous system neurons.
    Schnitzer J; Kim SU; Schachner M
    Brain Res; 1984 Jul; 317(1):21-32. PubMed ID: 6380650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of in vitro electroporation and slice culture for gene function analysis in the mouse embryonic spinal cord.
    Li S; Li Y; Li H; Yang C; Lin J
    Mech Dev; 2019 Aug; 158():103558. PubMed ID: 31212004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue.
    Zuo J; Neubauer D; Dyess K; Ferguson TA; Muir D
    Exp Neurol; 1998 Dec; 154(2):654-62. PubMed ID: 9878200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of growth medium, age in vitro and spontaneous bioelectric activity on the distribution of sensory ganglion-evoked activity in spinal cord explants.
    Baker RE; Habets AM; Brenner E; Corner MA
    Brain Res; 1982 Nov; 281(3):329-41. PubMed ID: 6185184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A human spinal cord cell promotes motoneuron survival and maturation in vitro.
    Rouleau C; Mersel M; de Weille J; Rakotoarivelo C; Fabre C; Privat A; Langley K; Petite D
    J Neurosci Res; 2009 Jan; 87(1):50-60. PubMed ID: 18752296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vitro model of the rat dorsal root entry zone reveals developmental changes in the extent of sensory axon growth into the spinal cord.
    Golding JP; Shewan D; Berry M; Cohen J
    Mol Cell Neurosci; 1996 Mar; 7(3):191-203. PubMed ID: 8726103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptogenesis and amino acid release from long term embryonic rat spinal cord neuronal culture using tissue culture inserts.
    Marsala M; Kakinohana O; Hefferan MP; Cizkova D; Kinjoh K; Marsala S
    J Neurosci Methods; 2005 Jan; 141(1):21-7. PubMed ID: 15585285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AN ELECTRON MICROSCOPE STUDY OF CULTURED RAT SPINAL CORD.
    BUNGE RP; BUNGE MB; PETERSON ER
    J Cell Biol; 1965 Feb; 24(2):163-91. PubMed ID: 14326105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal motor neurite outgrowth over glial scar inhibitors is enhanced by coculture with bone marrow stromal cells.
    Wright KT; Uchida K; Bara JJ; Roberts S; El Masri W; Johnson WE
    Spine J; 2014 Aug; 14(8):1722-33. PubMed ID: 24462452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raphe-spinal neurons display an age-dependent differential capacity for neurite outgrowth compared to other brainstem-spinal populations.
    Borisoff JF; Pataky DM; McBride CB; Steeves JD
    Exp Neurol; 2000 Nov; 166(1):16-28. PubMed ID: 11031080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of specific sensory-evoked synaptic networks in fetal mouse cord-brainstem cultures.
    Crain SM; Peterson ER
    Science; 1975 Apr; 188(4185):275-8. PubMed ID: 1118729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental patterns of neurite outgrowth from chick embryo spinal cord and retinal neurons on laminin substrates.
    Pierce ST; Bishop AK; Thompson JM
    Brain Res; 1988 May; 468(2):213-22. PubMed ID: 3382958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A procedure for purifying neuron-like cells in cultures from central nervous tissue with a defined medium.
    Skaper SD; Adler R; Varon S
    Dev Neurosci; 1979; 2(5):233-7. PubMed ID: 535534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic transmission between rat superior cervical ganglion neurons in dissociated cell cultures.
    Ko CP; Burton H; Johnson MI; Bunge RP
    Brain Res; 1976 Dec; 117(3):461-85. PubMed ID: 186157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regeneration of spinal neurons in inframammalian vertebrates: morphological and developmental aspects.
    Anderson MJ; Waxman SG
    J Hirnforsch; 1983; 24(4):371-98. PubMed ID: 6643991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.