BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 1402606)

  • 1. Multisegmental analyses of acoustic startle in the flying cricket (Teleogryllus oceanicus): kinematics and electromyography.
    Miles CI; May ML; Holbrook EH; Hoy RR
    J Exp Biol; 1992 Aug; 169():19-36. PubMed ID: 1402606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematic and aerodynamic aspects of ultrasound-induced negative phonotaxis inflying Australian field crickets (Teleogryllus oceanicus).
    May ML; Brodfuehrer PD; Hoy RR
    J Comp Physiol A; 1988 Dec; 164(2):243-9. PubMed ID: 3244130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound-induced yaw movements in the flying Australian field cricket (Teleogryllus oceanicus).
    May ML; Hoy RR
    J Exp Biol; 1990 Mar; 149():177-89. PubMed ID: 2324670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Habituation of the ultrasound-induced acoustic startle response in flying crickets.
    May ML; Hoy RR
    J Exp Biol; 1991 Sep; 159():489-99. PubMed ID: 1940771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of ultrasound and flight inputs on descending neurons in the cricket brain.
    Brodfuehrer PD; Hoy RR
    J Exp Biol; 1989 Sep; 145():157-71. PubMed ID: 2809494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonotaxis in flying crickets. I. Attraction to the calling song and avoidance of bat-like ultrasound are discrete behaviors.
    Nolen TG; Hoy RR
    J Comp Physiol A; 1986 Oct; 159(4):423-39. PubMed ID: 3783496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of inhibitory timing on contrast enhancement in auditory circuits in crickets (Teleogryllus oceanicus).
    Faulkes Z; Pollack GS
    J Neurophysiol; 2000 Sep; 84(3):1247-55. PubMed ID: 10979999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experience-dependent modification of ultrasound auditory processing in a cricket escape response.
    Engel JE; Hoy RR
    J Exp Biol; 1999 Oct; 202(Pt 20):2797-806. PubMed ID: 10504315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Front leg movements and tibial motoneurons underlying auditory steering in the cricket (Gryllus bimaculatus deGeer).
    Baden T; Hedwig B
    J Exp Biol; 2008 Jul; 211(Pt 13):2123-33. PubMed ID: 18552302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonotaxis in flying crickets. II. Physiological mechanisms of two-tone suppression of the high frequency avoidance steering behavior by the calling song.
    Nolen TG; Hoy RR
    J Comp Physiol A; 1986 Oct; 159(4):441-56. PubMed ID: 3783497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual feedback influences antennal positioning in flying hawk moths.
    Krishnan A; Sane SP
    J Exp Biol; 2014 Mar; 217(Pt 6):908-17. PubMed ID: 24265427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematics of phonotactic steering in the walking cricket Gryllus bimaculatus (de Geer).
    Witney AG; Hedwig B
    J Exp Biol; 2011 Jan; 214(Pt 1):69-79. PubMed ID: 21147970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound sensitive neurons in the cricket brain.
    Brodfuehrer PD; Hoy RR
    J Comp Physiol A; 1990 Mar; 166(5):651-62. PubMed ID: 2341990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of frequency-specific responses of omega neuron 1 in crickets (Teleogryllus oceanicus): a polysynaptic pathway for song?
    Faulkes Z; Pollack GS
    J Exp Biol; 2001 Apr; 204(Pt 7):1295-305. PubMed ID: 11249839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory habituation of auditory receptor neurons: implications for sound localization.
    Givois V; Pollack GS
    J Exp Biol; 2000 Sep; 203(Pt 17):2529-37. PubMed ID: 10933997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encoding of sound localization cues by an identified auditory interneuron: effects of stimulus temporal pattern.
    Samson AH; Pollack GS
    J Neurophysiol; 2002 Nov; 88(5):2322-8. PubMed ID: 12424273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental control of ultrasound sensitivity by a juvenile hormone analog in crickets (Teleogryllus oceanicus).
    Narbonne R; Pollack GS
    J Insect Physiol; 2008 Dec; 54(12):1552-6. PubMed ID: 18938172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intensity-dependent timing and precision of startle response latency in larval zebrafish.
    Troconis EL; Ordoobadi AJ; Sommers TF; Aziz-Bose R; Carter AR; Trapani JG
    J Physiol; 2017 Jan; 595(1):265-282. PubMed ID: 27228964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory ecology of predator-prey interactions: responses of the AN2 interneuron in the field cricket, Teleogryllus oceanicus to the echolocation calls of sympatric bats.
    Fullard JH; Ratcliffe JM; Guignion C
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jul; 191(7):605-18. PubMed ID: 15886992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic startle behavior in bushcrickets (Orthoptera; Tettigoniidae).
    Libersat F; Hoy RR
    J Comp Physiol A; 1991 Oct; 169(4):507-14. PubMed ID: 1779422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.