These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 1402606)
1. Multisegmental analyses of acoustic startle in the flying cricket (Teleogryllus oceanicus): kinematics and electromyography. Miles CI; May ML; Holbrook EH; Hoy RR J Exp Biol; 1992 Aug; 169():19-36. PubMed ID: 1402606 [TBL] [Abstract][Full Text] [Related]
2. Kinematic and aerodynamic aspects of ultrasound-induced negative phonotaxis inflying Australian field crickets (Teleogryllus oceanicus). May ML; Brodfuehrer PD; Hoy RR J Comp Physiol A; 1988 Dec; 164(2):243-9. PubMed ID: 3244130 [TBL] [Abstract][Full Text] [Related]
3. Ultrasound-induced yaw movements in the flying Australian field cricket (Teleogryllus oceanicus). May ML; Hoy RR J Exp Biol; 1990 Mar; 149():177-89. PubMed ID: 2324670 [TBL] [Abstract][Full Text] [Related]
4. Habituation of the ultrasound-induced acoustic startle response in flying crickets. May ML; Hoy RR J Exp Biol; 1991 Sep; 159():489-99. PubMed ID: 1940771 [TBL] [Abstract][Full Text] [Related]
5. Integration of ultrasound and flight inputs on descending neurons in the cricket brain. Brodfuehrer PD; Hoy RR J Exp Biol; 1989 Sep; 145():157-71. PubMed ID: 2809494 [TBL] [Abstract][Full Text] [Related]
6. Phonotaxis in flying crickets. I. Attraction to the calling song and avoidance of bat-like ultrasound are discrete behaviors. Nolen TG; Hoy RR J Comp Physiol A; 1986 Oct; 159(4):423-39. PubMed ID: 3783496 [TBL] [Abstract][Full Text] [Related]
7. Effects of inhibitory timing on contrast enhancement in auditory circuits in crickets (Teleogryllus oceanicus). Faulkes Z; Pollack GS J Neurophysiol; 2000 Sep; 84(3):1247-55. PubMed ID: 10979999 [TBL] [Abstract][Full Text] [Related]
8. Experience-dependent modification of ultrasound auditory processing in a cricket escape response. Engel JE; Hoy RR J Exp Biol; 1999 Oct; 202(Pt 20):2797-806. PubMed ID: 10504315 [TBL] [Abstract][Full Text] [Related]
9. Front leg movements and tibial motoneurons underlying auditory steering in the cricket (Gryllus bimaculatus deGeer). Baden T; Hedwig B J Exp Biol; 2008 Jul; 211(Pt 13):2123-33. PubMed ID: 18552302 [TBL] [Abstract][Full Text] [Related]
10. Phonotaxis in flying crickets. II. Physiological mechanisms of two-tone suppression of the high frequency avoidance steering behavior by the calling song. Nolen TG; Hoy RR J Comp Physiol A; 1986 Oct; 159(4):441-56. PubMed ID: 3783497 [TBL] [Abstract][Full Text] [Related]
16. Encoding of sound localization cues by an identified auditory interneuron: effects of stimulus temporal pattern. Samson AH; Pollack GS J Neurophysiol; 2002 Nov; 88(5):2322-8. PubMed ID: 12424273 [TBL] [Abstract][Full Text] [Related]
17. Developmental control of ultrasound sensitivity by a juvenile hormone analog in crickets (Teleogryllus oceanicus). Narbonne R; Pollack GS J Insect Physiol; 2008 Dec; 54(12):1552-6. PubMed ID: 18938172 [TBL] [Abstract][Full Text] [Related]
18. Intensity-dependent timing and precision of startle response latency in larval zebrafish. Troconis EL; Ordoobadi AJ; Sommers TF; Aziz-Bose R; Carter AR; Trapani JG J Physiol; 2017 Jan; 595(1):265-282. PubMed ID: 27228964 [TBL] [Abstract][Full Text] [Related]
19. Sensory ecology of predator-prey interactions: responses of the AN2 interneuron in the field cricket, Teleogryllus oceanicus to the echolocation calls of sympatric bats. Fullard JH; Ratcliffe JM; Guignion C J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jul; 191(7):605-18. PubMed ID: 15886992 [TBL] [Abstract][Full Text] [Related]