These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1402609)

  • 1. Strenuous exercise-induced remodelling of mature bone: relationships between in vivo strains and bone mechanics.
    Loitz BJ; Zernicke RF
    J Exp Biol; 1992 Sep; 170():1-18. PubMed ID: 1402609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and mechanical adaptation of immature bone to strenuous exercise.
    Matsuda JJ; Zernicke RF; Vailas AC; Pedrini VA; Pedrini-Mille A; Maynard JA
    J Appl Physiol (1985); 1986 Jun; 60(6):2028-34. PubMed ID: 3722069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal strain patterns in relation to exercise training during growth.
    Biewener AA; Bertram JE
    J Exp Biol; 1993 Dec; 185():51-69. PubMed ID: 8294852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does the mechanical milieu associated with high-speed running lead to adaptive changes in diaphyseal growing bone?
    Judex S; Zernicke RF
    Bone; 2000 Feb; 26(2):153-9. PubMed ID: 10678410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise-induced changes in the cortical bone of growing mice are bone- and gender-specific.
    Wallace JM; Rajachar RM; Allen MR; Bloomfield SA; Robey PG; Young MF; Kohn DH
    Bone; 2007 Apr; 40(4):1120-7. PubMed ID: 17240210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential response of rat limb bones to strenuous exercise.
    Li KC; Zernicke RF; Barnard RJ; Li AF
    J Appl Physiol (1985); 1991 Feb; 70(2):554-60. PubMed ID: 2022546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ex vivo calibration and validation of in vivo equine bone strain measures.
    Davies HM
    Equine Vet J; 2009 Mar; 41(3):225-8. PubMed ID: 19469225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental tests of planar strain theory for predicting bone cross-sectional longitudinal and shear strains.
    Verner KA; Lehner M; Lamas LP; Main RP
    J Exp Biol; 2016 Oct; 219(Pt 19):3082-3090. PubMed ID: 27471276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and mechanical adaptations of immature trabecular bone to strenuous exercise.
    Hou JC; Salem GJ; Zernicke RF; Barnard RJ
    J Appl Physiol (1985); 1990 Oct; 69(4):1309-14. PubMed ID: 2262448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanically adaptive bone remodelling.
    Lanyon LE; Goodship AE; Pye CJ; MacFie JH
    J Biomech; 1982; 15(3):141-54. PubMed ID: 7096367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loading conditions and cortical bone construction of an artiodactyl calcaneus.
    Su SC; Skedros JG; Bachus KN; Bloebaum RD
    J Exp Biol; 1999 Nov; 202(Pt 22):3239-54. PubMed ID: 10539972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancing the deer calcaneus model for bone adaptation studies: ex vivo strains obtained after transecting the tension members suggest an unrecognized important role for shear strains.
    Skedros JG; Su SC; Knight AN; Bloebaum RD; Bachus KN
    J Anat; 2019 Jan; 234(1):66-82. PubMed ID: 30411344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in canine cortical and cancellous bone mechanical properties following immobilization and remobilization with exercise.
    Kaneps AJ; Stover SM; Lane NE
    Bone; 1997 Nov; 21(5):419-23. PubMed ID: 9356735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The timing and distribution of strains around the surface of the midshaft of the third metacarpal bone during treadmill exercise in one Thoroughbred racehorse.
    Davies HM
    Aust Vet J; 2005 Mar; 83(3):157-62. PubMed ID: 15825628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Safety factors in bone strength.
    Biewener AA
    Calcif Tissue Int; 1993; 53 Suppl 1():S68-74. PubMed ID: 8275382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain magnitude related changes in whole bone architecture in growing rats.
    Mosley JR; March BM; Lynch J; Lanyon LE
    Bone; 1997 Mar; 20(3):191-8. PubMed ID: 9071468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rat bone properties and their relationship to gait during growth.
    Song H; Polk JD; Kersh ME
    J Exp Biol; 2019 Sep; 222(Pt 18):. PubMed ID: 31492819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress protection due to external fixation.
    O'Doherty DM; Butler SP; Goodship AE
    J Biomech; 1995 May; 28(5):575-86. PubMed ID: 7775493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-dependent mechanical properties of rat femur. Measured in vivo and in vitro.
    Indrekvam K; Husby OS; Gjerdet NR; Engester LB; Langeland N
    Acta Orthop Scand; 1991 Jun; 62(3):248-52. PubMed ID: 2042467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A histomorphometric study of cortical bone activity during increased weight-bearing exercise.
    Raab DM; Crenshaw TD; Kimmel DB; Smith EL
    J Bone Miner Res; 1991 Jul; 6(7):741-9. PubMed ID: 1950678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.