These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 1402886)

  • 1. Nuclear magnetic resonance studies on the effects of decreased external sodium on guinea pig cerebral cortex slices and the permeabilities of various sodium substitutes.
    Brooks KJ; Bachelard HS
    J Neurochem; 1992 Oct; 59(4):1352-5. PubMed ID: 1402886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of intracellular pH in cortical brain slices following anoxia studied by nuclear magnetic resonance spectroscopy: role of lactate removal, extracellular sodium and sodium/hydrogen exchange.
    Pirttilä TR; Kauppinen RA
    Neuroscience; 1992; 47(1):155-64. PubMed ID: 1315933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of intracellular pH in guinea pig cerebral cortex ex vivo studied by 31P and 1H nuclear magnetic resonance spectroscopy: role of extracellular bicarbonate and chloride.
    Pirttilä TR; Kauppinen RA
    J Neurochem; 1994 Feb; 62(2):656-64. PubMed ID: 8294928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influences of sodium and calcium on the recovery process from potassium contracture in the guinea-pig taenia coli.
    Katase T; Tomita T
    J Physiol; 1972 Jul; 224(2):489-500. PubMed ID: 5071405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular acidosis of identified leech neurones produced by substitution of external sodium.
    Deitmer JW; Schlue WR
    Brain Res; 1988 Oct; 462(2):233-41. PubMed ID: 3191385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral energy metabolism and intracellular pH during severe hypoxia and recovery: a study using 1H, 31P, and 1H [13C] nuclear magnetic resonance spectroscopy in the guinea pig cerebral cortex in vitro.
    Kauppinen RA; Williams SR
    J Neurosci Res; 1990 Jul; 26(3):356-69. PubMed ID: 2398514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of potassium depolarization on sodium-dependent calcium efflux from goldfish heart ventricles and guinea-pig atria.
    Busselen P
    J Physiol; 1982 Jun; 327():309-24. PubMed ID: 7120140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain metabolism and intracellular pH during ischaemia: effects of systemic glucose and bicarbonate administration studied by 31P and 1H nuclear magnetic resonance spectroscopy in vivo in the lamb.
    Hope PL; Cady EB; Delpy DT; Ives NK; Gardiner RM; Reynolds EO
    J Neurochem; 1988 May; 50(5):1394-402. PubMed ID: 2834511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of intracellular free magnesium concentration in the taenia of guinea-pig caecum.
    Nakayama S; Tomita T
    J Physiol; 1991 Apr; 435():559-72. PubMed ID: 1770450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of N-methyl-D-aspartate on [Ca2+]i and the energy state in the brain by 19F- and 31P-nuclear magnetic resonance spectroscopy.
    Ben-Yoseph O; Bachelard HS; Badar-Goffer RS; Dolin SJ; Morris PG
    J Neurochem; 1990 Oct; 55(4):1446-9. PubMed ID: 2204683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sodium gradient manipulation upon cellular calcium, 45Ca fluxes and cellular sodium in the guinea-pig taenia coli.
    Aaronson P; van Breemen C
    J Physiol; 1981; 319():443-61. PubMed ID: 7320922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium-hydrogen exchange in guinea-pig ventricular muscle during exposure to hyperosmolar solutions.
    Whalley DW; Hemsworth PD; Rasmussen HH
    J Physiol; 1991 Dec; 444():193-212. PubMed ID: 1668347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ammonia causes a drop in intracellular pH in metabolizing cortical brain slices. A [31P]- and [1H]nuclear magnetic resonance study.
    Brooks KJ; Kauppinen RA; Williams SR; Bachelard HS; Bates TE; Gadian DG
    Neuroscience; 1989; 33(1):185-92. PubMed ID: 2574835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of internal and external Na+ ions on inwardly rectifying K+ channels in guinea-pig ventricular cells.
    Matsuda H
    J Physiol; 1993 Jan; 460():311-26. PubMed ID: 8487197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral metabolism in experimental hydrocephalus: an in vivo 1H and 31P magnetic resonance spectroscopy study.
    Braun KP; van Eijsden P; Vandertop WP; de Graaf RA; Gooskens RH; Tulleken KA; Nicolay K
    J Neurosurg; 1999 Oct; 91(4):660-8. PubMed ID: 10507389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of hyperosmolarity and ion substitutions on amino acid efflux from the ischemic rat cerebral cortex.
    Phillis JW; Song D; O'Regan MH
    Brain Res; 1999 May; 828(1-2):1-11. PubMed ID: 10320719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The metabolism of gamma-aminobutyrate and glucose in potassium ion-stimulated brain tissue in vitro.
    Machiyama Y; Balázs R; Hammond BJ; Julian T; Richter D
    Biochem J; 1970 Feb; 116(3):469-81. PubMed ID: 5435691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular-free magnesium in the smooth muscle of guinea pig taenia caeci: a concomitant analysis for magnesium and pH upon sodium removal.
    Nakayama S; Nomura H; Tomita T
    J Gen Physiol; 1994 May; 103(5):833-51. PubMed ID: 8035164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of alpha-latrotoxin on acetylcholine release and intracellular Ca2+ concentration in synaptosomes: Na(+)-dependent and Na(+)-independent components.
    Deri Z; Bors P; Adam-Vizi V
    J Neurochem; 1993 Mar; 60(3):1065-72. PubMed ID: 8436959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of beta-adrenergic responses of chloride and calcium currents by external cations in guinea-pig ventricular cells.
    Tareen FM; Yoshida A; Ono K
    J Physiol; 1992 Nov; 457():211-28. PubMed ID: 1338457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.